Home
Class 12
MATHS
The value of lim(n->oo) (1^2 . n+2^2.(n...

The value of `lim_(n->oo) (1^2 . n+2^2.(n-1)+......+n^2 . 1)/(1^3+2^3+......+n^3)` is equal to

A

`1/3`

B

`2/3`

C

`1/2`

D

`1/6`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|40 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)(1^(2)*n+2^(2)*(n-1)+......+n^(2)*1)/(1^(3)+2^(3)+......+n^(3)) is equal to

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

lim_ (n rarr oo) (1 + 2 + 3 + ...... + n) / (n ^ (2))

The value of lim_ (n rarr oo) (1.n + 2 * (n-1) + 3 * (n-2) + ... + n.1) / (1 ^ (2) + 2 ^ (2 ) + ... + n ^ (2))

underset n rarr oo n has the value: Lim_ (n rarr oo) (1 * n + 2 (n-1) +3 (n-2) + ...... + n.1) / (1 ^ ( 2) + 2 ^ (2) + 3 ^ (2) + ...... + n ^ (2))

lim_(n rarr oo)(1^(2)+2^(2)+3^(2)+.........+n^(2))/(n^(3)) is equal to -

lim_ (n rarr oo) [(1 * n + 2 (n-1) + ... + n * 1) / (1 ^ (3) + 2 ^ (3) + ... + n ^ (3) ) +1] ^ (n)

lim_(n rarr oo) (1^2/(1-n^3)+2^2/(1-n^3)+...+n^2/(1-n^3))=

The value of lim_(n rarr oo)(sqrt(3n^(2)-1)-sqrt(2n^(2)-1))/(4n+3) is