Home
Class 12
MATHS
Consider the function f(x)=((ax+1)/(bx+2...

Consider the function `f(x)=((ax+1)/(bx+2))^(x)`, where `a,bgt0`, the `lim_(xtooo)f(x)` is

A

exists for all values of a and b

B

zer for `altb`

C

non existent for `agtb`

D

`e^(-(1//a))` or `e^(-(1//b))` if `a=b`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit of the function \( f(x) = \left( \frac{ax + 1}{bx + 2} \right)^x \) as \( x \) approaches infinity, we will follow these steps: ### Step 1: Analyze the function The function is given by: \[ f(x) = \left( \frac{ax + 1}{bx + 2} \right)^x \] As \( x \) approaches infinity, both the numerator and denominator will be dominated by the terms involving \( x \). ### Step 2: Simplify the fraction We can simplify the fraction inside the limit: \[ \frac{ax + 1}{bx + 2} = \frac{a + \frac{1}{x}}{b + \frac{2}{x}} \] As \( x \to \infty \), \( \frac{1}{x} \to 0 \) and \( \frac{2}{x} \to 0 \). Therefore, we have: \[ \frac{ax + 1}{bx + 2} \to \frac{a}{b} \] ### Step 3: Substitute into the limit Now substituting this back into the function gives us: \[ f(x) \approx \left( \frac{a}{b} \right)^x \] ### Step 4: Evaluate the limit based on the value of \( \frac{a}{b} \) 1. **Case 1:** If \( a < b \), then \( \frac{a}{b} < 1 \). Therefore: \[ \lim_{x \to \infty} f(x) = \left( \frac{a}{b} \right)^x \to 0 \] 2. **Case 2:** If \( a > b \), then \( \frac{a}{b} > 1 \). Therefore: \[ \lim_{x \to \infty} f(x) = \left( \frac{a}{b} \right)^x \to \infty \] 3. **Case 3:** If \( a = b \), then \( \frac{a}{b} = 1 \). We have the indeterminate form \( 1^\infty \). We can use the exponential limit: \[ f(x) = e^{x \ln\left(\frac{a}{b}\right)} \to e^{0} = 1 \] ### Final Result Thus, we summarize the results: - If \( a < b \), \( \lim_{x \to \infty} f(x) = 0 \) - If \( a > b \), \( \lim_{x \to \infty} f(x) = \infty \) - If \( a = b \), \( \lim_{x \to \infty} f(x) = 1 \)
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|40 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

Consider the function f(x)=1/x^(2) for x gt 0 . To find lim_(x to 0) f(x) .

For the function f(x) = 2 . Find lim_(x to 1) f(x)

Consider the function f(x) = {{:(2, x le 0),(2, x gt 0):} Find lim_(x->2)

Consider the function f(x)=(a^([x]+x)-1)/([x]+x) where [.] denotes the greatest integer function. What is lim_(xto0^(+))f(x) equal to?

Consider the function f(x)=(a^([x]+x)-1)/([x]+x) where [.] denotes the greatest integer function. What is lim_(xto0^(-)) (f(x) equal to?

If the function f(x) satisfies lim_(x to 1) (f(x)-2)/(x^(2)-1)=pi , then lim_(x to 1)f(x) is equal to

Consider the quadratic function f(x)=ax^(2)+bx+c where a,b,c in R and a!=0, such that f(x)=f(2-x) for all real number x. The sum of the roots of f(x) is

Consider the function : f(x)={{:(x+2",", x ne 1), (0",", x =1.):} To find lim_(x to 1)f(x) .

If f(x) is a continuous function satisfying f(x)f(1/x) =f(x)+f(1/x) and f(1) gt 0 then lim_(x to 1) f(x) is equal to