Home
Class 12
MATHS
If f(x)=(x.2^(x)-x)/(1-cosx) and g(x)=2^...

If `f(x)=(x.2^(x)-x)/(1-cosx)` and `g(x)=2^(x).sin((log2)/(2^(x)))` then

A

`lim_(xto0)f(x)=log2`

B

`lim_(xtooo)g(x)=log4`

C

`lim_(xto0)f(x)=log4`

D

`lim_(xtooo)g(x)=log2`

Text Solution

Verified by Experts

The correct Answer is:
C, D
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|13 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|40 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=sin^(-1)((2x)/(1+x^(2))) and g(x)=cos^(-1)((x^(2)-1)/(x^(2)+1)) . Then tha value of f(10)-g(100) is equal to

Let f(x)=2^(2x-1) and phi(x)=-2^(x)+2x log2 If f'(x)>phi(x), then

If f(x)=log((1+x)/(1-x))f(2(x)/(1+x^(2)))=2f(x)

Statement-1 : For real values of x and y the relation y^(2) = 2x - x^(1) - 1 represents y as a function of x. Statement-2 : If f(x) = log (x-2)(x-3) and g(x) = log(x-2) + log (x-3) then f=g Statement-3 : If f(x+2) = 2x-5 then f(x) = 2x-9.

Which of the following functions are identical? f(x)=1nx^(2) and g(x)=2ln xf(x)=log_(x)e and g(x)=(1)/(log x)f(x)=sin(cos^(-1)x) and g(x)=cos(sin^(-1)x) none of these

If function f and g given by f (x)=log(x-1)-log(x-2)and g(x)=log((x-1)/(x-2))"are equal" then x lies in the interval.

If f(x)=sin x+cos x and g(x)=x^(2)-1 then g(f(x)) is invertible in the domain.

Suppose f and g are two functions such that f,g:R rarr Rf(x)=ln(1+sqrt(1+x^(2))) and g(x)=ln(x+sqrt(1+x^(2))) then find the value of xe^(g(x))f((1)/(x))+g'(x) at x=1

If f(x) = Sin^-1 x and g(x)=(x^2-x-2)/(2x^2-x-6) then domain of fog(x) is