Home
Class 12
MATHS
If lim(xtoa)f(x)=1 and lim(xtoa)g(x)=oo ...

If `lim_(xtoa)f(x)=1` and `lim_(xtoa)g(x)=oo` then `lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x))` `lim_(xto0)((a^(x)+b^(x)+c^(x))/3)^(2/x)` is equal to

A

`a^(2//3)+b^(2//3)+c^(2//3)`

B

`abc`

C

`(abc)^(2//3)`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|3 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|27 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)xg(x)) lim_(xto0)((sinx)/x)^((sinx)/(x-sinx)) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

If lim_(xtoa)[f(x)+g(x)]=2 and lim_(xtoa) [f(x)-g(x)]=1, then find the value of lim_(xtoa) f(x)g(x).

Consider the following statements : 1. If lim_(xtoa) f(x) and lim_(xtoa) g(x) both exist, then lim_(xtoa) {f(x)g(x)} exists. 2. If lim_(xtoa) {f(x)g(x)} exists, then both lim_(xtoa) f(x) and lim_(xtoa) g(x) must exist. Which of the above statements is /are correct?

If lim_(x rarr5)f(x)=0 and lim_(x rarr5)g(x)=2, then Lim_(x rarr5)(f(x))/(g(x)) does not exist.

lim_(x rarr5)f(x)=2 and lim_(x rarr5)g(x)=0, then lim_(x rarr5)(f(x))/(g(x)) does not exist.

If lim_(xtoa^(+))f(x)=l=lim_(xtoa^(-))g(x) and lim_(xtoa^(-))f(x)=m=lim_(xtoa^(+))g(x) , the function f(x).g(x) is

(lim_(xto oo) ((x+3)/(x+1))^(x+1) is equal to

lim_(x rarr a)[f(x)+g(x)]=2 and lim_(x rarr a)[f(x)-g(x)]=1 then lim_(x rarr a)f(x)g(x)