Home
Class 12
MATHS
If [.] denotes the greatest integer func...

If `[.]` denotes the greatest integer function, then `lim_(xto0) [(x^2)/(tanx sin x)]` , is

A

0

B

1

C

does'nt exist

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 4|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function, then lim_(xrarr0) [(x^2)/(tanx sin x)] , is

If f(x) ={([x]^2+sin[x])/underset(0)([x])underset("for"[x]=0) "for" [x]ne 0 where [x] denotes the greatest integer function, then , lim_(xto0)f(x) , is

Let f(x)=["sinx"/x], x ne 0 , where [.] denotes the greatest integer function then lim_(xto0)f(x)

If [.] denotes the greatest integer function , then lim_(xrarr0) sin[-sec^2x]/(1+[cos x ]) is equal to

If [ ] denotes the greatest integer function, lim_(x to(pi)/2)(5 sin [cos x])/([cos x]+2) is

If [.] denotes the greatest integer function then lim_(x rarr0)(tan([-pi^(2)]x^(2))-x^(2)tan([-2 pi^(2)]))/(sin^(2)x)=

If n is a non zero integer and [*] denotes the greatest integer function then lim_(x rarr0)[(n(sin x)/(x)]+lim_(x rarr)[n(tan x)/(x)] equals

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then