Home
Class 12
MATHS
The value of lim(n->oo) sum(k=1)^n log(1...

The value of `lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n)`,is

A

`log_(e)(e/4)`

B

`log_(e)(4/e)`

C

`log_(e)4`

D

None of these

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • LIMITS

    ARIHANT MATHS|Exercise Exercise For Session 5|4 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos
  • LOGARITHM AND THEIR PROPERTIES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|4 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)sum_(k=1)^(n)log(1+(k)/(n))^((1)/(n)) ,is

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

The value of lim _( x to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

Using sandwitch theorem find the value of lim_(n rarr oo)sum_(i=1)^(n)(1)/(nCi)

The value of Lim_(n rarr oo)sum_(k=1)^(n)(n-k)/(n^(2))cos((4k)/n) equals

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

Find the value of lim_(n rarr oo)sum_(k=1)^(n)((k)/(n^(2)+k))

The value of lim_(n rarr oo)sum_(k=1)^(n)(6^(k))/((3^(k)-2^(k))(3^(k+1)-2^(k+1))) is equal to