Home
Class 12
MATHS
The values of a and b so that the functi...

The values of a and b so that the function `f(x) = {{:(x + a sqrt(2) sin x",",0 le x lt pi//4),(2 x cot x + b",",pi//4 le x le pi//2),(a cos 2 x - b sin x",",pi//2 lt x le pi):}` is continuous for `x in [0, pi]`, are

A

`a = (pi)/(6),b=-(pi)/(6)`

B

`a = -(pi)/(6), b = (pi)/(12)`

C

`a = (pi)/(6), b = -(pi)/(12)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( a \) and \( b \) such that the function \[ f(x) = \begin{cases} x + a \sqrt{2} \sin x & , 0 \leq x < \frac{\pi}{4} \\ 2x \cot x + b & , \frac{\pi}{4} \leq x \leq \frac{\pi}{2} \\ a \cos 2x - b \sin x & , \frac{\pi}{2} < x \leq \pi \end{cases} \] is continuous for \( x \in [0, \pi] \), we need to ensure continuity at the points where the function changes its definition, specifically at \( x = \frac{\pi}{4} \) and \( x = \frac{\pi}{2} \). ### Step 1: Continuity at \( x = \frac{\pi}{4} \) To ensure continuity at \( x = \frac{\pi}{4} \), we need: \[ \lim_{x \to \frac{\pi}{4}^-} f(x) = \lim_{x \to \frac{\pi}{4}^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to \frac{\pi}{4}^-} f(x) = \frac{\pi}{4} + a \sqrt{2} \sin\left(\frac{\pi}{4}\right) = \frac{\pi}{4} + a \sqrt{2} \cdot \frac{1}{\sqrt{2}} = \frac{\pi}{4} + a \] Calculating the right-hand limit: \[ \lim_{x \to \frac{\pi}{4}^+} f(x) = 2\left(\frac{\pi}{4}\right) \cot\left(\frac{\pi}{4}\right) + b = \frac{\pi}{2} + b \] Setting the two limits equal for continuity: \[ \frac{\pi}{4} + a = \frac{\pi}{2} + b \] Rearranging gives us our first equation: \[ a - b = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \quad \text{(Equation 1)} \] ### Step 2: Continuity at \( x = \frac{\pi}{2} \) Next, we ensure continuity at \( x = \frac{\pi}{2} \): \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^+} f(x) \] Calculating the left-hand limit: \[ \lim_{x \to \frac{\pi}{2}^-} f(x) = 2\left(\frac{\pi}{2}\right) \cot\left(\frac{\pi}{2}\right) + b = 0 + b = b \] Calculating the right-hand limit: \[ \lim_{x \to \frac{\pi}{2}^+} f(x) = a \cos(2 \cdot \frac{\pi}{2}) - b \sin\left(\frac{\pi}{2}\right) = a \cdot (-1) - b \cdot 1 = -a - b \] Setting the two limits equal for continuity: \[ b = -a - b \] Rearranging gives us our second equation: \[ a + 2b = 0 \quad \text{(Equation 2)} \] ### Step 3: Solving the equations Now we have the system of equations: 1. \( a - b = \frac{\pi}{4} \) 2. \( a + 2b = 0 \) From Equation 2, we can express \( a \) in terms of \( b \): \[ a = -2b \] Substituting this into Equation 1: \[ -2b - b = \frac{\pi}{4} \] This simplifies to: \[ -3b = \frac{\pi}{4} \] Thus, \[ b = -\frac{\pi}{12} \] Now substituting \( b \) back into the expression for \( a \): \[ a = -2\left(-\frac{\pi}{12}\right) = \frac{\pi}{6} \] ### Final Values The values of \( a \) and \( b \) that ensure the function is continuous are: \[ a = \frac{\pi}{6}, \quad b = -\frac{\pi}{12} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 2|4 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|43 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Find the values of a and b so that the function f(x)={{:(x+asqrt2 sin x", "0 le x le pi//4),(2x cot x + b", "pi//4 le x le pi//2),(a cot 2x - b sin x", "pi//2 lt x le pi):} is continuous for 0 le x le pi .

f(x)= {:{(x+asqrt2 sin x ,, 0 le x lt pi/4),( 2x cot x +b , , pi/4 le x le pi/2), (a cos 2 x - b sin x , , pi/2 lt x le pi):} continuous function AA x in [ 0,pi] " then " 5(a/b)^(2) equals ....

If f(x)={(x+a sqrt(2) sinx"," ,0 lt x lt (pi)/(4)),(2x cotx+b",",(pi)/(4) le x le (pi)/(2)),(a cos 2x-b sinx",", (pi)/(2) lt x le pi):} is continuous at x=(pi)/(4) , then a - b is equal to

The value of a and b such that the function f(x)={(-2sinx"," , -pi le x le -(pi)/(2)),(a sinx+b",", -(pi)/(2) lt x lt (pi)/(2)),(cosx",", (pi)/(2) le x le pi ):} is continuous in [-pi,pi] are

The value of a and b such that the function f(x) {:{(-2 sin x", "-pile x le -pi/2 ),(a sin x+b " ," -pi/2 lt x lt pi/2 ),(cos x", " pi/2 le x le pi ):} is continuous in [ - pi , pi ] are

If the function f(x)={(x+a^(2)sqrt(2)sinx",", 0 le x lt (pi)/(4)),(x cot x+b",",(pi)/(4) le x lt (pi)/(2)),(b sin 2x-a cos 2x",", (pi)/(2) le x le pi):} is continuous in the interval [0,pi] then the values of (a, b) are

The function f(x)=cos x, 0 le x le pi is

Let f(x) = {{:(-2 sin x,"for",-pi le x le - (pi)/(2)),(a sin x + b,"for",-(pi)/(2) lt x lt (pi)/(2)),(cos x,"for",(pi)/(2) le x le pi):} . If f is continuous on [-pi, pi) , then find the values of a and b.

ARIHANT MATHS-CONTINUITY AND DIFFERENTIABILITY-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The values of a and b so that the function f(x) = {{:(x + a sqrt(2) si...

    Text Solution

    |

  2. For every pair of continuous functions f,g:[0,1]->R such that max{f(x)...

    Text Solution

    |

  3. Let f:R-> R and g:R-> R be respectively given by f(x) = |x| +1 and g...

    Text Solution

    |

  4. Let f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0,x in RR, then f is

    Text Solution

    |

  5. Q. For every integer n, let an and bn be real numbers. Let function f:...

    Text Solution

    |

  6. Let f:R->R be a function such that f(x+y)=f(x)+f(y),AA x, y in R.

    Text Solution

    |

  7. "If "f(x)={{:(,-x-(pi)/(2),x le -(pi)/(2)),(,-cos x,-(pi)/(2) lt x le ...

    Text Solution

    |

  8. For the fucntion f(x)=x cos ""1/x, x ge 1 which one of the following i...

    Text Solution

    |

  9. Let g(x) = ((x -1)^(n))/(log cos^(m)(x-1)),0 lt x lt 2, m and n are in...

    Text Solution

    |

  10. Let f and g be real valued functions defined on interval (-1, 1) such ...

    Text Solution

    |

  11. In the following, [x] denotes the greatest integer less than or equal ...

    Text Solution

    |

  12. If f(x)=min.(1,x^2,x^3), then

    Text Solution

    |

  13. Let f(x) = ||x|-1|, then points where, f(x) is not differentiable is/a...

    Text Solution

    |

  14. lff is a differentiable function satisfying f(1/n)=0,AA n>=1,n in I, t...

    Text Solution

    |

  15. The domain of the derivative of the function f(x)={t a n^(-1)x ,if|x|l...

    Text Solution

    |

  16. The left hand derivative of f(x)=[x]sin(pix) at x = k, k is an intege...

    Text Solution

    |

  17. Which of the following functions is differentiable at x = 0? cos (|x|...

    Text Solution

    |

  18. For x in R, f(x) = | log 2- sin x| and g(x) = f(f(x)), then

    Text Solution

    |

  19. If the function g(x)={{:(,k sqrt(x+1),0 le x le3),(,mx+2,3lt xle5):...

    Text Solution

    |

  20. If f and g are differentiable functions in [0, 1] satisfying f(0)""=""...

    Text Solution

    |

  21. The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greate...

    Text Solution

    |