Home
Class 12
MATHS
If f(x) = {{:(x((e^(1//x) - e^(-1//x))/(...

If `f(x) = {{:(x((e^(1//x) - e^(-1//x))/(e^(1//x)+e^(1//x)))",",x ne 0),(" "0",",x = 0):}`, then at x = 0 f(x) is

A

differentiable

B

not differentiable

C

`f'(0^(+))=-1`

D

`f'(0^(-))=1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine whether the function \( f(x) \) is differentiable at \( x = 0 \), we will calculate the right-hand derivative and the left-hand derivative at that point. ### Step 1: Define the function The function is given by: \[ f(x) = \begin{cases} \frac{x(e^{1/x} - e^{-1/x})}{e^{1/x} + e^{-1/x}} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases} \] ### Step 2: Calculate the right-hand derivative at \( x = 0 \) The right-hand derivative is defined as: \[ f'_+(0) = \lim_{h \to 0^+} \frac{f(h) - f(0)}{h} \] Substituting \( f(0) = 0 \): \[ f'_+(0) = \lim_{h \to 0^+} \frac{f(h)}{h} \] For \( h \neq 0 \): \[ f(h) = \frac{h(e^{1/h} - e^{-1/h})}{e^{1/h} + e^{-1/h}} \] Thus, \[ f'_+(0) = \lim_{h \to 0^+} \frac{h \left( \frac{e^{1/h} - e^{-1/h}}{e^{1/h} + e^{-1/h}} \right)}{h} = \lim_{h \to 0^+} \frac{e^{1/h} - e^{-1/h}}{e^{1/h} + e^{-1/h}} \] ### Step 3: Simplify the expression As \( h \to 0^+ \), \( e^{1/h} \to \infty \) and \( e^{-1/h} \to 0 \): \[ f'_+(0) = \lim_{h \to 0^+} \frac{\infty - 0}{\infty + 0} = \lim_{h \to 0^+} \frac{e^{1/h}}{e^{1/h}} = 1 \] ### Step 4: Calculate the left-hand derivative at \( x = 0 \) The left-hand derivative is defined as: \[ f'_-(0) = \lim_{h \to 0^-} \frac{f(h) - f(0)}{h} \] Substituting \( f(0) = 0 \): \[ f'_-(0) = \lim_{h \to 0^-} \frac{f(h)}{h} \] For \( h < 0 \): \[ f(h) = \frac{h(e^{1/h} - e^{-1/h})}{e^{1/h} + e^{-1/h}} \] Thus, \[ f'_-(0) = \lim_{h \to 0^-} \frac{h \left( \frac{e^{1/h} - e^{-1/h}}{e^{1/h} + e^{-1/h}} \right)}{h} = \lim_{h \to 0^-} \frac{e^{1/h} - e^{-1/h}}{e^{1/h} + e^{-1/h}} \] ### Step 5: Simplify the left-hand derivative As \( h \to 0^- \), \( e^{1/h} \to 0 \) and \( e^{-1/h} \to \infty \): \[ f'_-(0) = \lim_{h \to 0^-} \frac{0 - \infty}{0 + \infty} = \lim_{h \to 0^-} \frac{-e^{-1/h}}{e^{-1/h}} = -1 \] ### Step 6: Compare the derivatives We have: \[ f'_+(0) = 1 \quad \text{and} \quad f'_-(0) = -1 \] Since the right-hand derivative and left-hand derivative are not equal: \[ f'_+(0) \neq f'_-(0) \] ### Conclusion The function \( f(x) \) is not differentiable at \( x = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 7|10 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|50 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise For Session 5|2 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|43 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If f(x) = {{:((1)/(e^(1//x))",",x ne 0),(0",",x = 0):} then

lim_(x rarr0)(e^(1/x)-e^(-1/x))/(e^(1/x)+e^(-1/x))

If f(x)={(e^((1)/(x))/(1+e^((1)/(x)))",", x ne0),(0",",x=0):} , then

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0

Let f(x)=g(x)(e^(1//x) -e^(-1//x))/(e^(1//x) + e^(-1//x)) , where g is a continuous function then lim_(x to 0) f(x) exist if

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is