Home
Class 12
MATHS
Q. Let f(x)=cos x $ H(x)=[min [f(t) 0&l...

Q. Let `f(x)=cos x` $ `H(x)=[min [f(t) 0<=t<=x` for `0<=x<=pi/2` , `pi/2-x` for `pi/2 ltx <="3`

A

H(x) is continuous and derivable in [0, 3]

B

H(x) is continuous but not derivable at `x = (pi)/(2)`

C

H(x) is neither continuous nor derivable at `x = (pi)/(2)`

D

maximum value of H(x) in [0, 3] is 1

Text Solution

Verified by Experts

The correct Answer is:
A, D
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|50 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|43 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Q.Let f(x)=cos x$H(x)=[min[f(t)0<=t<=x for 0<=x<=(pi)/(2),(pi)/(2)-x for (pi)/(2)

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(2) (x) ?

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(3) (x) ?

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(4)(x) ?

0 <= x <= 2 pi, 0 <= y <= 2 pi and sin x + sin y = 2, quad 0 <= x <= 2 pi, 0 <= y <= 2 pi and sin x + sin y = 2, then x + y =

If 0 lt x lt pi /2 then

If f(x)={:{((sin2x)/(sqrt(1-cos2x))", for " 0 lt x le pi/2),((cos x)/(pi-2x)", for "pi/2 lt x le pi):}

If f(x)={:{((sin 2x)/(sqrt(1-cos 2x))", for " 0 lt x lt pi/2),((cos x)/(pi-2x)", for " pi/2 lt x lt pi):} , then

ARIHANT MATHS-CONTINUITY AND DIFFERENTIABILITY-Exercise (More Than One Correct Option Type Questions)
  1. If f(x) = |x+1|(|x|+|x-1|), then at what points the function is/are no...

    Text Solution

    |

  2. Let [x] be the greatest integer function f(x)=(sin(1/4(pi[x]))/([x])) ...

    Text Solution

    |

  3. If f(x) = {{:((sin^(-1)x)^(2)cos((1)/(x))",",x ne 0),(0",",x = 0):} th...

    Text Solution

    |

  4. Q. Let f(x)=cos x $ H(x)=[min [f(t) 0&lt;=t&lt;=x for 0&lt;=x&lt;=p...

    Text Solution

    |

  5. If f(x) = 3(2x + 3)^(2//3) + 2x + 3, then

    Text Solution

    |

  6. "If "f(x)={{:(,-x-(pi)/(2),x le -(pi)/(2)),(,-cos x,-(pi)/(2) lt x le ...

    Text Solution

    |

  7. If f(x)={{:(,(x log cos x)/(log(1+x^(2))),x ne 0),(,0,x=0):} then

    Text Solution

    |

  8. Let [x] denotes the greatest integer less than or equal to x. If f(x) ...

    Text Solution

    |

  9. The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer funct...

    Text Solution

    |

  10. The function f(x)=sqrt(1-sqrt(1-x^2))

    Text Solution

    |

  11. Consider the function f(x) = |x^(3) + 1|. Then,

    Text Solution

    |

  12. f is a continous function in [a, b]; g is a continuous function in [b,...

    Text Solution

    |

  13. Which of the following function(s) has/have the same range ?

    Text Solution

    |

  14. If f(x) = sec 2x + cosec 2x, then f(x) is discontinuous at all points ...

    Text Solution

    |

  15. Let f(x)={{:(,x^(n)"sin "(1)/(x),x ne 0),(,0,x=0):} Then f(x) is conti...

    Text Solution

    |

  16. A function is defined as f(x) = {{:(e^(x)",",x le 0),(|x-1|",",x gt 0)...

    Text Solution

    |

  17. Let f(x) = int(-2)^(x)|t + 1|dt, then

    Text Solution

    |

  18. A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y),...

    Text Solution

    |

  19. If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt...

    Text Solution

    |

  20. If f(x) = 0 for x lt 0 and f(x) is differentiable at x = 0, then for x...

    Text Solution

    |