Home
Class 12
MATHS
If y=cot^(-1)(cotx), then (dy)/(dx) is...

If `y=cot^(-1)(cotx),` then `(dy)/(dx)` is

A

`1,x"inR`

B

`1,x"inR-{npi}`

C

`{{:(1",",x inR-{npi}),("does not exist", x in{npi},nin "integer" ):}`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = \cot^{-1}(\cot x) \), we will follow these steps: ### Step 1: Understand the function The function \( y = \cot^{-1}(\cot x) \) is not simply equal to \( x \) for all values of \( x \). The cotangent inverse function has a restricted range, which we need to consider. ### Step 2: Differentiate using the chain rule To differentiate \( y = \cot^{-1}(\cot x) \), we will use the chain rule. The derivative of \( \cot^{-1}(u) \) with respect to \( u \) is given by: \[ \frac{dy}{du} = -\frac{1}{1 + u^2} \] where \( u = \cot x \). ### Step 3: Differentiate \( u = \cot x \) Next, we need to find \( \frac{du}{dx} \): \[ \frac{du}{dx} = -\csc^2 x \] ### Step 4: Apply the chain rule Now, we can apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = -\frac{1}{1 + \cot^2 x} \cdot (-\csc^2 x) \] ### Step 5: Simplify the expression Recall that \( 1 + \cot^2 x = \csc^2 x \). Thus, we can simplify: \[ \frac{dy}{dx} = \frac{\csc^2 x}{\csc^2 x} = 1 \] ### Final Answer Therefore, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 1 \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 5|7 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 6|19 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 3|9 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=cot^(-1)(1+x^(2)-x), then (dy)/(dx)=

If y=(tanx)^(cotx) , then (dy)/(dx) is equal to......

If y=tan^(-1)(cot x)+cot^(-1)(tan x), then (dy)/(dx) is equal to (i)1( ii) 0( iii -1 (iv) -2

If y = tan^(-1) (x)/(2) - cot ^(-1) (x)/(2) , "then" (dy)/(dx) is equal to

If xy = tan^(-1) (xy) + cot^(-1) (xy), " then" (dy)/(dx) is equal to

If y=e^(x).cotx then (dy)/(dx) will be

If y=(x cot^(3)x)^(3/2) , then (dy)/(dx)=

If y=log (cosec x -cotx) ,then (dy)/(dx)

If y=tan^(-1)(cot((pi)/(2)-x)) then (dy)/(dx) is equal to