Home
Class 12
MATHS
If y=(sinx)^(tanx)+(cos x)^(secx), find ...

If `y=(sinx)^(tanx)+(cos x)^(secx)`, find `(dy)/(dx).`

Text Solution

Verified by Experts

The correct Answer is:
`(sinx)^(tanx).{sec^(2)x(logsinx)+1}+(cosx)^(secx).{secxtanxlog(cosx)-secxtanx}`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 7|11 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 8|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 5|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

y=(sinx)^(tanx)+(cosx)^(secx)

y=x^(sinx)+(sin x)^(cos x), then find (dy)/(dx)

If y=(e^(x)-tanx)/(x^(n)+cotx) , then find (dy)/(dx)

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].

If y= (sinx -cos x )^((sin x +cos x ) ),then (dy)/(dx)=

If y=sinx+e^(x), Then find (dy)/(dx) .

x^(x)+(tanx)^(x) find dy/dx

If y=(secx-tanx)/(secx+tanx), then (dy)/(dx) equals.

If y=e^(sinx)+(tanx)^(x)," prove that "(dy)/(dx)=e^(sinx)cosx+(tanx)^(x)[2x" cosec "2x+log tanx].

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .