Home
Class 12
MATHS
if y = e^((x)^(e^x)) + x^(e^(e^x)) + e^(...

if `y = e^((x)^(e^x)) + x^(e^(e^x)) + e^(x^(x^e))`, then dy/dx`=e^((x)^(e^x)) x^(e^x)[e^xlogx+e^x/x]+ x^(e^(e^x)) e^(e^x)[1/x+e^xlogx]+e^(x^(x^e))x^(x^e)x^(e-1)[1+elogx]`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 7|11 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 8|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 5|7 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

y=e^(x^(e^(x)))+x^(e^(e^(x))) , find (dy)/(dx)

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If y =(e^(x) +e^(-x))/( e^(x) - e^(-x)) ,then (dy)/(dx) =

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)) ,then (dy)/(dx) =

(e^(x))/(e^(x)(e^(x)-1))dx

If e^(x) +e^(y) =e^(x+y),then (dy)/(dx)=

If y=e^x^e^x+e^x^x^e , prove that (dy)/(dx)=e^x^e^xdotx^e^x{(e^x)/x+edotlogx}+x^e^e^xdote^e^x{1/x+dotlogx}+e^x^x^ex^x^ex^(e-1){1+elogx}

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

If y=e^(x)+e^(-x)," then: "(dy)/(dx)=

(e^(x))/(1+e^(x))