Home
Class 12
MATHS
Differentiate sin^(-1)(4xsqrt(1-4x^(2)))...

Differentiate `sin^(-1)(4xsqrt(1-4x^(2)))w.r.t.sqrt(1-4x^(2))`, if `x in(-(1)/(2sqrt2),(1)/(2sqrt2))`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate \( \sin^{-1}(4x \sqrt{1 - 4x^2}) \) with respect to \( \sqrt{1 - 4x^2} \), we will follow these steps: ### Step 1: Define the function Let: \[ y = \sin^{-1}(4x \sqrt{1 - 4x^2}) \] We need to differentiate \( y \) with respect to \( z = \sqrt{1 - 4x^2} \). ### Step 2: Use the chain rule Using the chain rule, we can express the derivative as: \[ \frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} \] ### Step 3: Differentiate \( y \) with respect to \( x \) To find \( \frac{dy}{dx} \), we use the derivative of the inverse sine function: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - (4x \sqrt{1 - 4x^2})^2}} \cdot \frac{d}{dx}(4x \sqrt{1 - 4x^2}) \] Now, we need to differentiate \( 4x \sqrt{1 - 4x^2} \): Using the product rule: \[ \frac{d}{dx}(4x \sqrt{1 - 4x^2}) = 4 \sqrt{1 - 4x^2} + 4x \cdot \frac{1}{2\sqrt{1 - 4x^2}} \cdot (-8x) \] Simplifying: \[ = 4 \sqrt{1 - 4x^2} - \frac{16x^2}{2\sqrt{1 - 4x^2}} = 4 \sqrt{1 - 4x^2} - \frac{8x^2}{\sqrt{1 - 4x^2}} \] Combining the terms: \[ = \frac{4(1 - 4x^2) - 8x^2}{\sqrt{1 - 4x^2}} = \frac{4 - 32x^2}{\sqrt{1 - 4x^2}} \] Thus: \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - (4x \sqrt{1 - 4x^2})^2}} \cdot \frac{4 - 32x^2}{\sqrt{1 - 4x^2}} \] ### Step 4: Differentiate \( z \) with respect to \( x \) Now, we differentiate \( z = \sqrt{1 - 4x^2} \): \[ \frac{dz}{dx} = \frac{1}{2\sqrt{1 - 4x^2}} \cdot (-8x) = -\frac{4x}{\sqrt{1 - 4x^2}} \] ### Step 5: Combine the derivatives Now we can combine these results to find \( \frac{dy}{dz} \): \[ \frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} = \frac{dy}{dx} \cdot \frac{1}{\frac{dz}{dx}} = \frac{dy}{dx} \cdot \left(-\frac{\sqrt{1 - 4x^2}}{4x}\right) \] Substituting \( \frac{dy}{dx} \): \[ \frac{dy}{dz} = \left(\frac{1}{\sqrt{1 - (4x \sqrt{1 - 4x^2})^2}} \cdot \frac{4 - 32x^2}{\sqrt{1 - 4x^2}}\right) \cdot \left(-\frac{\sqrt{1 - 4x^2}}{4x}\right) \] ### Step 6: Simplify the expression This simplifies to: \[ \frac{dy}{dz} = -\frac{(4 - 32x^2)}{4x \sqrt{1 - (4x \sqrt{1 - 4x^2})^2}} \] ### Final Result Thus, the derivative of \( \sin^{-1}(4x \sqrt{1 - 4x^2}) \) with respect to \( \sqrt{1 - 4x^2} \) is: \[ \frac{dy}{dz} = -\frac{(4 - 32x^2)}{4x \sqrt{1 - (4x \sqrt{1 - 4x^2})^2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 8|14 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 9|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 6|19 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

Differentiate sin^(-1)(2axsqrt(1-a^(2)x^(2)))w.r.t.sqrt(1-a^(2)x^(2)).

Differentiate sin^(-1)(x/sqrt(1+x^(2))) w.r.t. tan^(-1)x .

Differentiate sin^(-1)sqrt(1-x^(2)) with respect to cos^(-1)x, if x in(-(1)/(2sqrt(2)),(1)/(2sqrt(2)))

Differentiate sin^(-1) [(3x+(4sqrt(1-x^(2))))/(5)] w.r.t.x .

Differentiate sin^(-1)(2^(x+1)/(1+4^(x))) w.r.t. x.

Differentiate tan^(-1)((sqrt(1+x^2)-1)/x) w.r.t. tan^(-1)x

Differentiate sin^(-1)(2xsqrt(1-x^(2))) w.r.t. cos^(-1)((1-x^(2))/(1+x^(2))) .

Differentiate tan^(-1)((sqrt(1+x^(2))+1)/(x)) w.r.t. x.

Differentiate tan^(-1){(sqrt(1+x^(2))-1)/(x)} w.r.t. x.

differentiate sin^(-1)((2^(x-1))/(1+4^(x)))w*r.t.x