Home
Class 12
MATHS
If y=xlog(x/(a+bx)), then prove that x^3...

If `y=xlog(x/(a+bx))`, then prove that `x^3(d^2y)/(dx^2)=(x(dy)/(dx)-y)^2`

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 9|3 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 7|11 Videos
  • DIFFERENTIAL EQUATION

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|26 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos

Similar Questions

Explore conceptually related problems

If y=x log{(x)/((a+bx))], then show that x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

(a+bx)e^((y)/(x))=x, Prove that x^(3)(d^(2)y)/(dx^(2))=(x(dy)/(dx)-y)^(2)

"If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

If y=x log((x)/(a+bx)), thenx ^(3)(d^(2)y)/(dx^(2))= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^(2)y(dy)/(dx)-x(d)(y(dy)/(dx)-x)^(2)

If y=x log((x)/(a+bx)) then x^(2)(d^(2)y)/(dx^(2))=(x((dy)/(dx))-y)^(m) where

If y=sin^(-1)x ,then prove that (1-x^(2))(d^(2)y)/(dx^(2))=x(dy/dx)

If y=(sin^(-1)x)^2 then prove that (1-x^(2))(d^2y)/(dx^2)-x(dy)/(dx)-2=0 .

x(d^(2)y)/(dx^(2))+(dy)/(dx)+x=0