Home
Class 12
MATHS
Let f(x)={{:(1+x",", 0 le x le 2),(3-x",...

Let `f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):}`
find (fof) (x).

Text Solution

AI Generated Solution

The correct Answer is:
To find \( (f \circ f)(x) \), we need to evaluate \( f(f(x)) \). Let's break it down step by step. ### Step 1: Understand the function \( f(x) \) The function \( f(x) \) is defined piecewise as follows: \[ f(x) = \begin{cases} 1 + x & \text{for } 0 \leq x \leq 2 \\ 3 - x & \text{for } 2 < x \leq 3 \end{cases} \] ### Step 2: Determine the range of \( f(x) \) - For \( 0 \leq x \leq 2 \): - When \( x = 0 \), \( f(0) = 1 + 0 = 1 \) - When \( x = 2 \), \( f(2) = 1 + 2 = 3 \) Thus, for \( 0 \leq x \leq 2 \), \( f(x) \) ranges from 1 to 3. - For \( 2 < x \leq 3 \): - When \( x = 2 \), \( f(2) = 3 - 2 = 1 \) - When \( x = 3 \), \( f(3) = 3 - 3 = 0 \) Thus, for \( 2 < x \leq 3 \), \( f(x) \) ranges from 0 to 1. Combining these results, the overall range of \( f(x) \) is \( [0, 3] \). ### Step 3: Evaluate \( f(f(x)) \) Now we need to evaluate \( f(f(x)) \) based on the ranges we found. 1. **Case 1**: If \( 0 \leq x \leq 2 \) - Here, \( f(x) = 1 + x \) which lies in the interval \( [1, 3] \). - We need to evaluate \( f(f(x)) \): - If \( 1 \leq f(x) \leq 2 \) (i.e., \( 0 \leq x \leq 1 \)): \[ f(f(x)) = f(1 + x) = 1 + (1 + x) = 2 + x \] - If \( 2 < f(x) \leq 3 \) (i.e., \( 1 < x \leq 2 \)): \[ f(f(x)) = f(1 + x) = 3 - (1 + x) = 2 - x \] 2. **Case 2**: If \( 2 < x \leq 3 \) - Here, \( f(x) = 3 - x \) which lies in the interval \( [0, 1] \). - We need to evaluate \( f(f(x)) \): \[ f(f(x)) = f(3 - x) = 1 + (3 - x) = 4 - x \] ### Step 4: Combine the results Putting it all together, we have: \[ (f \circ f)(x) = \begin{cases} 2 + x & \text{for } 0 \leq x \leq 1 \\ 2 - x & \text{for } 1 < x \leq 2 \\ 4 - x & \text{for } 2 < x \leq 3 \end{cases} \] ### Final Answer Thus, the final expression for \( (f \circ f)(x) \) is: \[ (f \circ f)(x) = \begin{cases} 2 + x & \text{for } 0 \leq x \leq 1 \\ 2 - x & \text{for } 1 < x \leq 2 \\ 4 - x & \text{for } 2 < x \leq 3 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 1|5 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 2|6 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

Let f(x) be defined on [-2,2] and be given by f(x)={(-1",",-2 le x le 0),(x-1",",0 lt x le 2):} and g(x)=f(|x|) +|f(x)| . Then find g(x) .

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x) is continuous in [0, 3], where f(x)={:{(3x-4", for " 0 le x le 2),(2x+k", for " 2 lt x le 3):} , then k=

If f(x) = {(3x-4,",",0 le x le 2),(2x+k,",",2 lt x le 3):} is continuous in [0,3], then the value of k is

If f(x)={:{(x-1", for " 1 le x lt 2),(2x+3", for " 2 le x le 3):} , then at x=2

ARIHANT MATHS-FUNCTIONS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let f(x)={{:(1+x",", 0 le x le 2),(3-x"," ,2 lt x le 3):} find (fof)...

    Text Solution

    |

  2. If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x), then the value...

    Text Solution

    |

  3. Let F(x) be an indefinite integral of sin^(2)x Statement-1: The fun...

    Text Solution

    |

  4. Find the range of values of t for which 2sint=(1-2x+5x^2)/(3x^2-2x-1)

    Text Solution

    |

  5. Let fk(x) = 1/k(sin^k x + cos^k x) where x in RR and k gt= 1. Then f4(...

    Text Solution

    |

  6. The function f:[0,3] to [1,29], defined by f(x)=2x^(3)-15x^(2)+36x+1 i...

    Text Solution

    |

  7. Let f(x)=x^2a n dg(x)=sinxfora l lx in Rdot Then the set of all x sat...

    Text Solution

    |

  8. Let f:(0,1)->R be defined by f(x)=(b-x)/(1-bx), where b is constant s...

    Text Solution

    |

  9. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  10. If X and Y are two non-empty sets where f: X->Y,is function is define...

    Text Solution

    |

  11. If f(x)={x, when x is rational and 0, when x is irrational g(x)={0, wh...

    Text Solution

    |

  12. If f(x)=sinx+cosx, g(x)=x^(2)-1, then g{f(x)} is invertible in the dom...

    Text Solution

    |

  13. Domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) fo...

    Text Solution

    |

  14. The range of the function f(x)=(x^2+x+2)/(x^2+x+1),x in R , is (1,oo)...

    Text Solution

    |

  15. If f:[0,infty) rarr [0,infty) " and " f(x)=x/(1+x), then f is

    Text Solution

    |

  16. If f:R to R be defined by f(x) =2x+sinx for x in R, then check the na...

    Text Solution

    |

  17. Let E={1,2,3,4}a n dF-{1,2}dot If N is the number of onto functions fr...

    Text Solution

    |

  18. Suppose f(x)=(x+1)^2forxgeq-1. If g(x) is the function whose graph is ...

    Text Solution

    |

  19. If f:[1,infty) rarr [2,infty) is given by f(x)=x+1/x, " then " f^(-1)(...

    Text Solution

    |

  20. Let f(x0=(1+b^(2))x^(2)+2bx+1 and let m(b) be the minimum value of f(x...

    Text Solution

    |

  21. The domain of definition of function of f(x)=(log(2)(x+3))/(x^(2)+3x+2...

    Text Solution

    |