Home
Class 12
MATHS
f(x)=1/sqrt([x]^(2)-[x]-6), where [*] de...

`f(x)=1/sqrt([x]^(2)-[x]-6)`, where `[*]` denotes the greatest integer function.

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \frac{1}{\sqrt{[x]^2 - [x] - 6}} \), where \([x]\) denotes the greatest integer function (also known as the floor function), we need to ensure that the expression under the square root is positive. Let's solve this step by step. ### Step 1: Set up the inequality We need to ensure that the expression inside the square root is greater than zero: \[ [x]^2 - [x] - 6 > 0 \] ### Step 2: Substitute \( y \) for \([x]\) Let \( y = [x] \). Then we can rewrite the inequality as: \[ y^2 - y - 6 > 0 \] ### Step 3: Factor the quadratic expression To factor the quadratic, we look for two numbers that multiply to \(-6\) and add to \(-1\). These numbers are \(-3\) and \(2\). Thus, we can factor the expression: \[ (y - 3)(y + 2) > 0 \] ### Step 4: Determine the critical points The critical points from the factors are: \[ y - 3 = 0 \quad \Rightarrow \quad y = 3 \] \[ y + 2 = 0 \quad \Rightarrow \quad y = -2 \] ### Step 5: Test intervals We will test the intervals determined by the critical points \( y = -2 \) and \( y = 3 \): 1. \( (-\infty, -2) \) 2. \( (-2, 3) \) 3. \( (3, \infty) \) - For \( y < -2 \) (e.g., \( y = -3 \)): \[ (-3 - 3)(-3 + 2) = (-6)(-1) = 6 > 0 \quad \text{(satisfied)} \] - For \( -2 < y < 3 \) (e.g., \( y = 0 \)): \[ (0 - 3)(0 + 2) = (-3)(2) = -6 < 0 \quad \text{(not satisfied)} \] - For \( y > 3 \) (e.g., \( y = 4 \)): \[ (4 - 3)(4 + 2) = (1)(6) = 6 > 0 \quad \text{(satisfied)} \] ### Step 6: Combine the intervals From our testing, we find that the inequality \( (y - 3)(y + 2) > 0 \) is satisfied in the intervals: \[ y \in (-\infty, -2) \cup (3, \infty) \] ### Step 7: Translate back to \( x \) Since \( y = [x] \), we need to find the corresponding intervals for \( x \): - For \( y < -2 \): This means \( [x] \leq -3 \), which corresponds to \( x < -2 \). - For \( y > 3 \): This means \( [x] \geq 4 \), which corresponds to \( x \geq 4 \). ### Final Answer Thus, the domain of \( f(x) \) is: \[ \text{Domain of } f(x) = (-\infty, -2) \cup [4, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 5|25 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 3|10 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

If f(x)=[2x], where [.] denotes the greatest integer function,then

Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

Draw the graph of f(x) = [x^(2)], x in [0, 2) , where [*] denotes the greatest integer function.

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

ARIHANT MATHS-FUNCTIONS-Exercise For Session 4
  1. f(x)=sqrt(x^(2)-abs(x)-2) . Find the domain of f(x).

    Text Solution

    |

  2. f(x)=sqrt(2-abs(x))+sqrt(1+abs(x)). Find the domain of f(x).

    Text Solution

    |

  3. f(x)=log(e)abs(log(e)x). Find the domain of f(x).

    Text Solution

    |

  4. f(x)=sin^(-1)((2-3[x])/4), which [*] denotes the greatest integer func...

    Text Solution

    |

  5. f(x)=log(x-[x]), where [*] denotes the greatest integer function. find...

    Text Solution

    |

  6. f(x)=1/sqrt([x]^(2)-[x]-6), where [*] denotes the greatest integer fun...

    Text Solution

    |

  7. f(x)= cosec^(-1)[1+sin^(2)x], where [*] denotes the greatest integer f...

    Text Solution

    |

  8. f(x)=cos^-1sqrt(log([x]) ((|x|)/x)) where [.] denotes the greatest int...

    Text Solution

    |

  9. f(x)=sqrt((x-1)/(x-2{x})), where {*} denotes the fractional part.

    Text Solution

    |

  10. Domain of f(x)=sin^(-1)(([x])/({x})), where [*] and {*} denote greates...

    Text Solution

    |

  11. f(x)=sin^(-1)[2x^(2)-3], where [*] denotes the greatest integer funct...

    Text Solution

    |

  12. f(x)=sin^-1[log2(x^2/2)] where [ . ] denotes the greatest integer func...

    Text Solution

    |

  13. The domain of f(x) = sqrt( 2 {x}^2 - 3 {x} + 1) where {.} denotes the...

    Text Solution

    |

  14. f(x)=1/([abs(x-2}]+[abs(x-10)]-8) where [*] denotes the greatest integ...

    Text Solution

    |

  15. If a function is defined as f(x)=sqrt(log(h(x))g(x)), where g(x)=|sinx...

    Text Solution

    |

  16. The number of solutions of the equation [y+[y]]=2 cosx, where y=(1)...

    Text Solution

    |

  17. Prove that for n=1, 2, 3... [(n+1)/2]+[(n+2)/4]+[(n+4)/8]+[(n+8)/16]+...

    Text Solution

    |

  18. Find the integral solutions to the equation [x][y]=x+y . Show that all...

    Text Solution

    |