Home
Class 12
MATHS
f(x)=e^(x)/([x+1]),x ge 0...

`f(x)=e^(x)/([x+1]),x ge 0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{e^x}{\lfloor x \rfloor + 1} \) where \( x \geq 0 \), we will follow these steps: ### Step 1: Understand the components of the function The function consists of two parts: - The numerator \( e^x \), which is an exponential function that increases rapidly as \( x \) increases. - The denominator \( \lfloor x \rfloor + 1 \), where \( \lfloor x \rfloor \) is the greatest integer less than or equal to \( x \). This means that for any integer \( n \), when \( n \leq x < n+1 \), \( \lfloor x \rfloor = n \). ### Step 2: Analyze the behavior of \( f(x) \) Since \( x \geq 0 \), we can analyze \( f(x) \) in intervals defined by integers: - For \( 0 \leq x < 1 \): \( \lfloor x \rfloor = 0 \) so \( f(x) = \frac{e^x}{1} = e^x \). - For \( 1 \leq x < 2 \): \( \lfloor x \rfloor = 1 \) so \( f(x) = \frac{e^x}{2} \). - For \( 2 \leq x < 3 \): \( \lfloor x \rfloor = 2 \) so \( f(x) = \frac{e^x}{3} \). - And so on for \( n \leq x < n+1 \): \( f(x) = \frac{e^x}{n+1} \). ### Step 3: Determine the minimum and maximum values in each interval 1. **For \( 0 \leq x < 1 \)**: - \( f(x) = e^x \) is increasing, so the minimum value at \( x = 0 \) is \( f(0) = e^0 = 1 \) and approaches \( e^1 = e \) as \( x \) approaches 1. 2. **For \( 1 \leq x < 2 \)**: - \( f(x) = \frac{e^x}{2} \) is also increasing. The minimum value at \( x = 1 \) is \( f(1) = \frac{e^1}{2} = \frac{e}{2} \) and approaches \( \frac{e^2}{2} \) as \( x \) approaches 2. 3. **For \( 2 \leq x < 3 \)**: - \( f(x) = \frac{e^x}{3} \) is increasing. The minimum value at \( x = 2 \) is \( f(2) = \frac{e^2}{3} \) and approaches \( \frac{e^3}{3} \) as \( x \) approaches 3. 4. **Continuing this pattern**: - For \( n \leq x < n+1 \), the minimum value is \( \frac{e^n}{n+1} \) and approaches \( \frac{e^{n+1}}{n+1} \) as \( x \) approaches \( n+1 \). ### Step 4: Identify the overall range - As \( n \) increases, \( \frac{e^n}{n+1} \) approaches 0 for large \( n \) and the maximum value approaches infinity. - The minimum value across all intervals starts from \( 1 \) (at \( x = 0 \)) and increases without bound as \( x \) increases. ### Conclusion The range of \( f(x) \) is \( \left[ 1, \infty \right) \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 6|5 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 7|5 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 4|18 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Find the range for f(x)=e^(x)/(1+[x]) " when " x ge 0 .

Let f(x) =(x+1)^(2) - 1, x ge -1 Statement 1: The set {x : f(x) =f^(-1)(x)}= {0,-1} Statement-2: f is a bijection.

Cosider f(x)=1-e^((1)/(x)-1) Q. If D is the set of all real x such that f(x)ge0 then D is equal to

a#b=(-1)^(ab)(a^(b)+b^(a)) f(x)=x^(2)-2x if x ge 0 =0if x lt0 g(x)=2x, if x ge0 =1, if x lt0 Find the value of f(g(2#3))+g(f(1#2)):

if f(x)=e^(-(1)/(x^(2))),x>0 and f(x)=0,x<=0 then f(x) is

Let psi_1:[0,oo] to R , psi_2:[0,oo) to R , f:[0,oo) to R and g :[0,oo) to R be functions such that f(0)=g(0)=0 psi_1(x)=e^-x+x , x ge 0 , psi_2(x)=x^2-2x-2e^-x+2 , x ge0 f(x)=int_(-x)^x (abs(t)-t^2)e^(-t^2)dt , x gt 0 g(x)=int_0^(x^2) (sqrtt)e^-t dt , x gt o Which of the following statements is TRUE

Let psi_1:[0,oo] to R , psi_2:[0,oo) to R , f:[0,oo) to R and g :[0,oo) to R be functions such that f(0)=g(0)=0 psi_1(x)=e^-x+x , x ge 0 , psi_2(x)=x^2-2x-2e^-x+2 , x ge0 f(x)=int_(-x)^x (abs(t)-t^2)e^(-t^2)dt , x gt 0 g(x)=int_0^(x^2) (sqrtt)e^-t dt , x gt o Which of the following statements is TRUE

a#b=(-1)^(ab)(a^(b)+b^(a)) f(x)=x^(2)-2x if x ge 0 =0if x lt0 g(x)=2x, if x ge0 =1, if x lt0 Find the value of f(2#3)#g(3#4) :

Let f be a function defined by f(x)=(x-1)^(2)+x, (x ge 1) . Statement-1: The set [x:f(x)=f^(-1)(x)]={1,2} Statement-2: f is a bijectioon and f^(-1)(x)=1+sqrt(x-1), x ge 1

ARIHANT MATHS-FUNCTIONS-Exercise For Session 5
  1. f(x)=(x^(2)-2)/(x^(2)-3). find the range of f(x).

    Text Solution

    |

  2. f(x)=(x^(2)+2x+3)/x . Find the range of f(x).

    Text Solution

    |

  3. f(x)=abs(x-1)+abs(x-2)+abs(x-3) . Find the range of f(x).

    Text Solution

    |

  4. Find the domain and range of the following function: f(x)=log([x-1])...

    Text Solution

    |

  5. f(x)=cos^-1sqrt(log([x]) ((|x|)/x)) where [.] denotes the greatest int...

    Text Solution

    |

  6. Let f(x)=sqrt([sin 2x] -[cos 2x]) (where I I denotes the greatest inte...

    Text Solution

    |

  7. The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2], ...

    Text Solution

    |

  8. Range of f(x) =sin^-1(sqrt(x^2+x+1)) is

    Text Solution

    |

  9. f(x)=cos^(-1)(x^(2)/sqrt(1+x^(2)))

    Text Solution

    |

  10. Find the range of f(x)=sqrt(log(cos(sinx)))

    Text Solution

    |

  11. f(x)=(x-1)/(x^(2)-2x+3) Find the range of f(x).

    Text Solution

    |

  12. if:f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the...

    Text Solution

    |

  13. Range of f(x)=(tan(pi[x^(2)-x]))/(1+sin(cosx))

    Text Solution

    |

  14. f(x)=e^(x)/([x+1]),x ge 0

    Text Solution

    |

  15. f(x)=[abs(sinx)+abs(cosx)], where [*] denotes the greatest integer fun...

    Text Solution

    |

  16. f(x)=sqrt(-x^(2)+4x-3)+sqrt(sin""pi/2(sin""pi/2(x-1)))

    Text Solution

    |

  17. Find the image of the following sets under the mapping f(x)= x^4 -8x^3...

    Text Solution

    |

  18. Find the domain and range of f(x)=log[ cos|x|+1/2],where [.] denotes...

    Text Solution

    |

  19. Find the domain and range of f(x) = sin^-1 (log [x]) + log (sin^-1 [x...

    Text Solution

    |

  20. Find the domain and range of f(x)=[log(sin^(-1)sqrt(x^2+3x+2))].

    Text Solution

    |