Home
Class 12
MATHS
f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-co...

`f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x`

Text Solution

Verified by Experts

The correct Answer is:
Identical
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 10|5 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 11|2 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 8|8 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b)f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c)f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d)f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x

Let f(x)=det[[sec^(2)x,1,1cos^(2)x,cos^(2)x,cos ec^(2)x1,cos^(2)x,cot^(2)x]], then

If sin x+sin^(2)x=1, then the value of cos^(2)x+cos^(4)x+cot^(4)x-cot^(2)x is

If sin x+sin^(2)x=1 then the value of cos^(2)x+cos^(4)x+cot^(4)x-cot^(2)x is

f(x)=cot^(-1)((2x)/(1-x^(2))), g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x to a)(f(x)-f(a))/(g(x)-g(a)), a in (0, (1)/(2))

If sin x+sin^(2)x=1 then the value of cos^(2)+cos^(4)x+cot^(4)x-cot^(2)x is

(cos2x-1)cot^(2)x=-3sin x

int(sec x+2cot^(2)x+cos^(2)x)/(cos x)dx

cot x cos^(2)x-tan x sin^(2)x=2cot2x

f(x)=|(secx,cos x,sec^2x + cot x cosecx),(cos^2x,cos^2x,cosec^2 x),(1,cos^2x,cos^2x)| then int_0^(pi/2) f(x) dx=.....