Home
Class 12
MATHS
f(x)=e^(lncot), g(x)=cot^(- 1)x...

`f(x)=e^(lncot), g(x)=cot^(- 1)x`

Text Solution

Verified by Experts

The correct Answer is:
Identical
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 10|5 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 11|2 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise For Session 8|8 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(x)=e^(ln cot),g(x)=cot^(-1)x

f(x)=cot^(2)x*cos^(2)x, g(x)=cot^(2)x-cos^(2)x

let f(x)=e^(x),g(x)=sin^(-1)x and h(x)=f(g(x)) th e n fin d (h'(x))/(h(x))

If f(x)=sin^(-1)(sin x),g(x)=cos^(-1)(cos x) and h(x)=cot^(-1)(cot x) , then which of the following is/are correct ?

cot^(-1)(e^(x))

f(x)=cot^(-1)((2x)/(1-x^(2))), g(x)=cos^(-1)((1-x^(2))/(1+x^(2))) then lim_(x to a)(f(x)-f(a))/(g(x)-g(a)), a in (0, (1)/(2))

f(x)=[(cos x)cot^2x!=0e^(-1//2)\ if\ x=0 find whether the f(x) is continuous at x=0 or not.

Which of the following pairs of functions is/are identical? (a) f(x)="tan"(tan^(-1)x)a n dg(x)="cot"(cot^(-1)x) (b)f(x)=sgn(x)a n dg(x)=sgn(sgn(x)) (c)f(x)=cot^2xdotcos^2xa n dg(x)=cot^2x-cos^2x (d)f(x)=e^(lnsec^(-1)x)a n dg(x)=sec^(-1)x

f(x)=In" "e^(x), g(x)=e^(Inx) . Identical function or not?