Home
Class 12
MATHS
Let f:N rarr R be such that f(1)=1 and f...

Let `f:N rarr R` be such that f(1)=1 and f(1)+2f(2)+3f(3)+…+nf(n)=n(n+1)f(n), for `n ge 2, " then " `/(2010f(2010))` is ……….. .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f(2010) \) based on the given functional equation and initial condition. ### Step-by-Step Solution: 1. **Understand the Given Information:** We know that: - \( f(1) = 1 \) - For \( n \geq 2 \), the equation is: \[ f(1) + 2f(2) + 3f(3) + \ldots + nf(n) = n(n+1)f(n) \] 2. **Substituting \( n = 2 \):** Substitute \( n = 2 \) into the equation: \[ f(1) + 2f(2) = 2(2+1)f(2) \] This simplifies to: \[ 1 + 2f(2) = 6f(2) \] Rearranging gives: \[ 1 = 6f(2) - 2f(2) \implies 1 = 4f(2) \implies f(2) = \frac{1}{4} \] 3. **Substituting \( n = 3 \):** Now substitute \( n = 3 \): \[ f(1) + 2f(2) + 3f(3) = 3(3+1)f(3) \] Plugging in the known values: \[ 1 + 2 \cdot \frac{1}{4} + 3f(3) = 12f(3) \] Simplifying gives: \[ 1 + \frac{1}{2} + 3f(3) = 12f(3) \] This simplifies to: \[ \frac{3}{2} + 3f(3) = 12f(3) \] Rearranging gives: \[ \frac{3}{2} = 12f(3) - 3f(3) \implies \frac{3}{2} = 9f(3) \implies f(3) = \frac{1}{6} \] 4. **Substituting \( n = 4 \):** Next, substitute \( n = 4 \): \[ f(1) + 2f(2) + 3f(3) + 4f(4) = 4(4+1)f(4) \] Plugging in the known values: \[ 1 + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{6} + 4f(4) = 20f(4) \] Simplifying gives: \[ 1 + \frac{1}{2} + \frac{1}{2} + 4f(4) = 20f(4) \] Thus: \[ 2 + 4f(4) = 20f(4) \] Rearranging gives: \[ 2 = 20f(4) - 4f(4) \implies 2 = 16f(4) \implies f(4) = \frac{1}{8} \] 5. **Finding a Pattern:** Continuing this process, we can observe a pattern: - \( f(1) = 1 \) - \( f(2) = \frac{1}{4} \) - \( f(3) = \frac{1}{6} \) - \( f(4) = \frac{1}{8} \) It appears that: \[ f(n) = \frac{1}{2n} \] 6. **Finding \( f(2010) \):** Using the pattern, we find: \[ f(2010) = \frac{1}{2 \cdot 2010} = \frac{1}{4020} \] 7. **Final Calculation:** We need to find \( \frac{1}{2010f(2010)} \): \[ \frac{1}{2010f(2010)} = \frac{1}{2010 \cdot \frac{1}{4020}} = \frac{4020}{2010} = 2 \] ### Conclusion: The final answer is: \[ \frac{1}{2010f(2010)} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|13 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|24 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Matching Type Questions)|2 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Let f : N rarr R be a function such that f(1) + 2f(2) + 3f(3) + ....+nf(n)= n(n+1) f(n) , for n ge 2 and f(1) = 1 then

Let f be a function from the set of positive integers to the set of real number such that f(1)=1 and sum_(r=1)^(n)rf(r)=n(n+1)f(n), forall n ge 2 the value of 2126 f(1063) is ………….. .

Let f:N rarr R be such that f(1)=1 and f(1)+2f(2)+3f(3)+nf(n) ,for all n in N,n>=2, where N is the set of natural numbers and R is the set of real numbers. Then the value of f(500) is

Let f:N rarr R be a function such that (ii) f(1)+2f(2)+3f(3)+.........+nf(n)=n(n+1)f(n)=n(n+1)f(n)AA n>=2 Then find f(2011)

If (1)=1 and f(1)+2f(2)=3f(3)+......nf(n)=n(n+1)f(n) Then find the value of 49f(49)

Consider the function f defined on the set of all non-negative interger such that f(0) = 1, f(1) =0 and f(n) + f(n-1) = nf(n-1)+(n-1) f(n-2) for n ge 2 , then f(5) is equal to

Let f:NrarrN in such that f(n+1)gtf(f(n)) for all n in N then

Let f:N rarr N and given by f(x)=3x+5 Find f(1),f(3),f(7).

If f(1) = 1 and f(n + 1) = 2 f(n) + 1, if n ge 1, then f(n) is.

Let f be a function from be set of positive integers to the set of real numbers i.e. f: N to R , such that f(1)+2f(2)+3f(3)+……+nf(n)=n(n+1)f(n) form ge2 , then find the value of f(1994).

ARIHANT MATHS-FUNCTIONS-Exercise (Single Integer Answer Type Questions)
  1. A function f (x) is defined for all x in R and satisfies, f(x + y) = f...

    Text Solution

    |

  2. If f:R rarr R satisfying f(x-f(y))=f(f(y))+xf(y)+f(x)-1, for all x,y i...

    Text Solution

    |

  3. Let f:N rarr R be such that f(1)=1 and f(1)+2f(2)+3f(3)+…+nf(n)=n(n+1)...

    Text Solution

    |

  4. If f(x)=(2010x+165)/(165x-2010), x gt 0 " and " x ne (2010)/(165), the...

    Text Solution

    |

  5. If alpha,beta,gamma in R, alpha+beta+gamma=4 " and " alpha^(2)+beta^(2...

    Text Solution

    |

  6. The number or linear functions f satisfying f(x+f(x))=x+f(x) AA x in R...

    Text Solution

    |

  7. If A={1,2,3}, B={1,3,5,7,9}, the ratio of number of one-one functions ...

    Text Solution

    |

  8. If n(A)=4, n(B)=5 and number of functions from A to B such that range ...

    Text Solution

    |

  9. If a and b are constants, such that f(x)=asinx+bxcosx+2x^(2) and f(2...

    Text Solution

    |

  10. If the functions f(x)=x^(5)+e^(x//3) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  11. If f(x)=x^(3)-12x+p,p in {1,2,3,…,15} and for each 'p', the number of ...

    Text Solution

    |

  12. Let f(x) denotes the number of zeroes in f'(x). If f(m)-f(n)=3, the va...

    Text Solution

    |

  13. If x^2+y x^2=4 then find the xamimum value of (x^3+y^3)/(x+y)

    Text Solution

    |

  14. Let f(n) denotes the square of the sum of the digits of natural numbe...

    Text Solution

    |

  15. If [sinx]+[x/(2pi)]+[(2x)/(5pi)]=(9x)/(10pi), where [*] denotes the gr...

    Text Solution

    |

  16. The number of integral solutions of 1/x+1/y=1/6 " with " x le y " is "...

    Text Solution

    |

  17. If f(x) is a polynominal of degree 4 with leading coefficient '1' sati...

    Text Solution

    |

  18. If a+b = 3- cos 4 theta and a-b =4 sin 2theta, then ab is always less ...

    Text Solution

    |

  19. Let 'n' be the number of elements in the domain set of the function f(...

    Text Solution

    |

  20. If f(x) is a function such that f(x-1)+f(x+1)=sqrt(3)f(x) and f(5)=10,...

    Text Solution

    |