Home
Class 12
MATHS
If f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(...

If `f(x)=(a^(x))/(a^(x)+sqrt(a))(agt0),g(n)=sum_(r=1)^(2n-1)2f((r)/(2n))`. Find te value `g(4)`

Text Solution

Verified by Experts

The correct Answer is:
(2n-1)
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|24 Videos
  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|31 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(a^(x))/(a^(x)+sqrt(a)),(a>0), then find the value of sum_(r=1)^(2n1)2f((r)/(2n))

If f(x+y)=f(x)*f(y) and f(1)=4. Find sum_(r=1)^(n)f(r)

If f(x)=tan x+tan^(2)x tan2x and g(n)=sum_(r=0)^(n)f(2^(r)) and l=g(2015)-tan(2^(201) then

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

If f(x) is integrable over [1,], then int_(2)^(2)f(x)dx is equal to lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=n+1)^(2n)f((r)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(n)f((r+n)/(n))lim_(n rarr oo)(1)/(n)sum_(r=1)^(2n)f((r)/(n))

If sum_(r=1)^(n) r(sqrt(10))/(3)sum_(r=1)^(n)r^(2),sum_(r=1)^(n) r^(3) are in G.P., then the value of n, is

If f(x)=tan x+tan^(2)x tan2x and g(n)=sum_(r=0)^(x=k)f(2^(r)) then g(2013)-tan(2^(2014)) is equal to ( )0(B) tan 1(C)-tan1(D)1

If a=(e^(2 pi i))/(7) and f(x)=A_(0)+sum_(k=1)^(20)A_(k)x^(k) then the value of sum_(r=0)^(6)f(a^(r)x)=n(A_(0)+A_(n)x^(n)+A_(2n)x^(2n)), then the value of n is

Let f:R rarr R be a function which satisfies f(x+y)=f(x)+f(y) AA x, y in R . If f(1)=2 and g(n)=sum_(k-1)^((n-1))f(k),n in N then the value of n , for which g(n)=20 , is :

(1+x)(sum_(r=0)^(n)nC_(r)x^(r))+(1+x^(2))(sum_(r=0)^(n-1)(n-1)C_(r)x^(r))+...(1+x^(n))(sum_(r=0)^(1)1C_(r)x^(r))=a_(0)+a_(1)x+, then the value of (a_(1))/(a_(n)+1)+(a_(1))/(a_(n))+(a_(2))/(a_(n-1))+......+(a_(n+1))/(a_(0)) is equal to