Home
Class 12
MATHS
Let f(x)=(alphax)/(x+1),x ne -1. Then, f...

Let `f(x)=(alphax)/(x+1),x ne -1`. Then, for what values of `alpha` is f[f(x)]=x?

A

`sqrt(2)`

B

`-sqrt(2)`

C

1

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \(\alpha\) such that \(f[f(x)] = x\) for the function \(f(x) = \frac{\alpha x}{x + 1}\), where \(x \neq -1\). ### Step-by-Step Solution: 1. **Define the function:** \[ f(x) = \frac{\alpha x}{x + 1} \] 2. **Find \(f[f(x)]\):** We need to substitute \(f(x)\) back into itself: \[ f[f(x)] = f\left(\frac{\alpha x}{x + 1}\right) \] Substitute \(\frac{\alpha x}{x + 1}\) into \(f\): \[ f\left(\frac{\alpha x}{x + 1}\right) = \frac{\alpha \left(\frac{\alpha x}{x + 1}\right)}{\frac{\alpha x}{x + 1} + 1} \] 3. **Simplify the denominator:** The denominator becomes: \[ \frac{\alpha x}{x + 1} + 1 = \frac{\alpha x + (x + 1)}{x + 1} = \frac{(\alpha + 1)x + 1}{x + 1} \] 4. **Substitute back into the function:** Now, substituting the simplified denominator back: \[ f[f(x)] = \frac{\alpha \left(\frac{\alpha x}{x + 1}\right)}{\frac{(\alpha + 1)x + 1}{x + 1}} = \frac{\alpha^2 x}{(\alpha + 1)x + 1} \] 5. **Set \(f[f(x)] = x\):** We want: \[ \frac{\alpha^2 x}{(\alpha + 1)x + 1} = x \] 6. **Cross-multiply to eliminate the fraction:** \[ \alpha^2 x = x \left((\alpha + 1)x + 1\right) \] Expanding the right side: \[ \alpha^2 x = (\alpha + 1)x^2 + x \] 7. **Rearranging the equation:** \[ 0 = (\alpha + 1)x^2 + (1 - \alpha^2)x \] 8. **Factoring out \(x\):** \[ x\left((\alpha + 1)x + (1 - \alpha^2)\right) = 0 \] This gives us two cases: \(x = 0\) or \((\alpha + 1)x + (1 - \alpha^2) = 0\). 9. **Solving the quadratic equation:** For the quadratic equation: \[ (\alpha + 1)x + (1 - \alpha^2) = 0 \] We can find \(x\): \[ x = \frac{\alpha^2 - 1}{\alpha + 1} \] 10. **Setting the discriminant to zero:** For \(f[f(x)] = x\) to hold for all \(x\), the discriminant must be zero: \[ D = (1 - \alpha^2)^2 - 4(\alpha + 1)(0) = 0 \] This leads to: \[ 1 - \alpha^2 = 0 \implies \alpha^2 = 1 \implies \alpha = 1 \text{ or } \alpha = -1 \] ### Final Answer: The values of \(\alpha\) for which \(f[f(x)] = x\) are: \[ \alpha = 1 \quad \text{or} \quad \alpha = -1 \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS|Exercise Exercise (Subjective Type Questions)|13 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=(alpha x)/(x+1), x ne -1. Then, for what value of alpha " is " f[f(x)]=x ?

Let f(x)=(alpha x)/((x+1)),x!=-1. The for what value of alpha is f(f(x))=x( a )sqrt(2)(b)-sqrt(2)(c)1

Let f(x)=(alpha x)/(x+1),x!=-1. Then write the value of alpha satisfing f(f(x))=x for all x!=-1

Let f(x) = (alpha x^(2))/(x + 1), x ne - 1 , The value of alpha for which f(a) = a , (a ne 0 ) is

Let f(x)=(alpha x)/(x+1) Then the value of alpha for which f(f(x)=x is

" Let "f(x)=(alpha x)/(x+1),x!=-1" and "f(f(x))=x" ,then the value of "(alpha^(2))/(2)" is "

Let f(x)={{:((e^(alphax)-e^x)/x^2, x ne 0),(3//2,x=0):} The value of alpha so that f is a continuous function is

If f(x)=(x+1)/(x-1) , x ne 1 , then f^(-1)(x) is

ARIHANT MATHS-FUNCTIONS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. The function f:[0,3] to [1,29], defined by f(x)=2x^(3)-15x^(2)+36x+1 i...

    Text Solution

    |

  2. Let f(x)=x^2a n dg(x)=sinxfora l lx in Rdot Then the set of all x sat...

    Text Solution

    |

  3. Let f:(0,1)->R be defined by f(x)=(b-x)/(1-bx), where b is constant s...

    Text Solution

    |

  4. Let f be a real-valued function defined on the inverval (-1,1) such th...

    Text Solution

    |

  5. If X and Y are two non-empty sets where f: X->Y,is function is define...

    Text Solution

    |

  6. If f(x)={x, when x is rational and 0, when x is irrational g(x)={0, wh...

    Text Solution

    |

  7. If f(x)=sinx+cosx, g(x)=x^(2)-1, then g{f(x)} is invertible in the dom...

    Text Solution

    |

  8. Domain of definition of the function f(x)=sqrt(sin^(-1)(2x)+pi/6) fo...

    Text Solution

    |

  9. The range of the function f(x)=(x^2+x+2)/(x^2+x+1),x in R , is (1,oo)...

    Text Solution

    |

  10. If f:[0,infty) rarr [0,infty) " and " f(x)=x/(1+x), then f is

    Text Solution

    |

  11. If f:R to R be defined by f(x) =2x+sinx for x in R, then check the na...

    Text Solution

    |

  12. Let E={1,2,3,4}a n dF-{1,2}dot If N is the number of onto functions fr...

    Text Solution

    |

  13. Suppose f(x)=(x+1)^2forxgeq-1. If g(x) is the function whose graph is ...

    Text Solution

    |

  14. If f:[1,infty) rarr [2,infty) is given by f(x)=x+1/x, " then " f^(-1)(...

    Text Solution

    |

  15. Let f(x0=(1+b^(2))x^(2)+2bx+1 and let m(b) be the minimum value of f(x...

    Text Solution

    |

  16. The domain of definition of function of f(x)=(log(2)(x+3))/(x^(2)+3x+2...

    Text Solution

    |

  17. Let f(x)=(alphax)/(x+1),x ne -1. Then, for what values of alpha is f[f...

    Text Solution

    |

  18. Let g(x)=1+x-[x] and f(x)={{:(-1",", x lt 0),(0",",x=0),(1",", x gt 0)...

    Text Solution

    |

  19. The domain of definition of the function y(x) is given by the equation...

    Text Solution

    |

  20. Let f(theta)=sintheta(sintheta+sin3theta).then

    Text Solution

    |