Home
Class 12
MATHS
In an acute triangle A B C if sides a , ...

In an acute triangle `A B C` if sides `a , b` are constants and the base angles `Aa n dB` vary, then show that `(d A)/(sqrt(a^2-b^2sin^2A))=(d B)/(sqrt(b^2-a^2sin^2B))`

Text Solution

Verified by Experts

The correct Answer is:
`(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))`
Promotional Banner

Topper's Solved these Questions

  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise For Session 1|15 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise For Session 2|6 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos

Similar Questions

Explore conceptually related problems

In an acute triangle ABC if sides a,b are constants and the base angles A and B vary, then show that (dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In a triangle ABCD if the sides a,b be constants and the base angle A and B vary, then show that,(dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In a triangle ABCD if the sides a,b be constants and the base angle A and B vary, then show that,(dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In a triangle ABCD if the sides a,b be constants and the base angle A and B vary, then show that,(dA)/(sqrt(a^(2)-b^(2)sin^(2)A))=(dB)/(sqrt(b^(2)-a^(2)sin^(2)B))

In triangle ABC ,if a sin A sin B+b cos^(2)A=sqrt(2)a ,then the value of ((b)/(a)) is

If a,b,c,d are in proportion then prove that sqrt((a^2+5c^2)/(b^2+5d^2))=a/b

In any triangle ABC, show that: 2a sin((B)/(2))sin((C)/(2))=(b+c-a)sin((A)/(2))

For any triangle ABC, If B=3C, show that cos C=sqrt((b+c)/(4c)) and (sin A)/(2)=(b-c)/(2c)