Home
Class 12
MATHS
If ax^(2)+by^(2)=1 cute a'x^(2)+b'y^(2)=...

If `ax^(2)+by^(2)=1` cute `a'x^(2)+b'y^(2)=1` orthogonally, then

A

`(1)/(a)-(1)/(a')=(1)/(b)-(1)/(b')`

B

`(1)/(a)+(1)/(a')=(1)/(b)+(1)/(b')`

C

`(1)/(a)+(1)/(b)=(1)/(a')+(1)/(b')`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise For Session 5|5 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise For Session 3|10 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos

Similar Questions

Explore conceptually related problems

If the curve ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally, then

If two curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally,then show that (1)/(a)-(1)/(b)=(1)/(a')-(1)/(b')

Show that it the curves ax^(2) +by^(2)=1 " and " Ax^(2) +By^(2) =1 are orthogonal then ab(A-B)=AB(a-b).

The curves ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1 intersect orthogonally, then

If the curves 2x^(2)+3y^(2)=6 and ax^(2)+4y^(2)=4 intersect orthogonally, then a =

Show the condition that the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 should intersect orthogonally is (1)/(a)-(1)/(b)=(1)/(a')-(a)/(b)

If the family of curves y=ax^2+b cuts the family of curves x^2+2y^2-y=a orthogonally, then the value of b = (A) 1 (B) 2/3 (C) 1/8 (D) 1/4

If the bisectors of angles represented by ax^(2)+2hxy+by^(2)=0 and a'x^(2)+2h'xy+b'y^(2)=0 is same , then

If the curves (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 and (x^(2))/(c^(2))+(y^(2))/(d^(2))=1 intersect orthogonally, then