Home
Class 12
MATHS
Let f(x)a n dg(x) be two functions which...

Let `f(x)a n dg(x)` be two functions which are defined and differentiable for all `xgeqx_0dot` If `f(x_0)=g(x_0)a n df^(prime)(x)>g^(prime)(x)` for all `x > x_0,` then prove that `f(x)>g(x)` for all `x > x_0dot`

A

`f(x) lt g(x)` for some `x gt x_(0)`

B

`f(x)=g(x)` for some `x gt x_(0)`

C

`f(x) gt g(x)` only for some `xgt x_(0)`

D

`f(x) gt g(x)` for all `xgt x_(0)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (More Than One Correct Option Type Questions)|15 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise For Session 6|4 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos

Similar Questions

Explore conceptually related problems

Let f(x) and g(x) be two functions which are defined and differentiable for all x>=x_(0). If f(x_(0))=g(x_(0)) and f'(x)>g'(x) for all x>x_(0), then prove that f(x)>g(x) for all x>x_(0).

Iff (x) and g(x) be two function which are defined and differentiable for all x>=x_(0). If f(x_(0))=g(x_(0)) and f'(x)>g'(x) for all f>x_(0), then prove that f(x)>g(x) for all x>x_(0).

Let f(x) and g(x) be defined and differntiable for all x ge x_0 and f(x_0)=g(x_0) f(x) ge (x) for x gt x_0 then

If f(x)=(a-x^(n))^((1)/(n)),a>0 and n in N, then prove that f(f(x))=x for all x.

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all x, then g'f(x) is equal to

Let the function f satisfies f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) foe all x and f(0)=3 The value of f(x).f^(prime)(-x)=f(-x).f^(prime)(x) for all x, is

Let f(x) and g(x) be two function having finite nonzero third-order derivatives f''(x) and g''(x) for all x in R. If f(x)g(x)=1 for all x in R, then prove that (f''')/(f')-(g'')/(g')=3((f'')/(f)-(g'')/(g))

Let f:R rarr R be a twice differentiable function such that f(x+pi)=f(x) and f'(x)+f(x)>=0 for all x in R. show that f(x)>=0 for all x in R .

Given that f(x) gt g(x) for all x in R and f(0) =g(0) then

Let f'(x) gt0 and g'(x) lt 0 " for all " x in R Then

ARIHANT MATHS-DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS -Exercise (Single Option Correct Type Questions)
  1. The graphs y=2x^(3)-4x+2 and y=x^(3)+2x-1 intersect at exacty 3 distin...

    Text Solution

    |

  2. In which of the following function Rolle's theorem is applicable ?

    Text Solution

    |

  3. The figure shows a right triangle with its hypotenuse OB along the Y-a...

    Text Solution

    |

  4. Number of positive integral value(s) of 'a' for which the curve y=a^(x...

    Text Solution

    |

  5. Given f(x)=4-(1/2-x)^(2/3),g(x)={("tan"[x])/x ,x!=0 1,x=0 h(x)={x},k(...

    Text Solution

    |

  6. If the function f(x)=x^(4)+bx^(2)+8x+1 has a horizontal tangent and a...

    Text Solution

    |

  7. Coffee is coming out from a conical filter, with height and diameter b...

    Text Solution

    |

  8. A horse runs along a circle with a speed of 20k m//h . A lantern is at...

    Text Solution

    |

  9. Water runs into an inverted conical tent at the height of the water is...

    Text Solution

    |

  10. Let f(x)=x^3-3x^2+2x . If the equation f(x)=k has exactly one posit...

    Text Solution

    |

  11. The x-intercept of the tangent at any arbitarary point of the curve (a...

    Text Solution

    |

  12. If f(x) is continuous and differentible over [-2, 5] and -4lef'(x)le3 ...

    Text Solution

    |

  13. A curve is represented parametrically by the equations x=t+e^(at) and ...

    Text Solution

    |

  14. At any two points of the curve represented parametrically by x=a (2 co...

    Text Solution

    |

  15. Let F(x)=int(sinx)^(cosx)e^((1+sin^(-1)(t))dt on [0,(pi)/(2)], then

    Text Solution

    |

  16. Given f' (1) = 1 and d/(dx) f(2x))=f'(x) AA x > 0. If f' (x) is diff...

    Text Solution

    |

  17. Let f(x)a n dg(x) be two functions which are defined and differentiabl...

    Text Solution

    |

  18. The range of values of m for which the line y = mx and the curve y=(x)...

    Text Solution

    |

  19. Let S be a square with sides of length x. If we approximate the change...

    Text Solution

    |

  20. Consider f(x)=int1^x(t+1/t)dt and g(x)=f'(x) If P is a point on the cu...

    Text Solution

    |