Home
Class 12
MATHS
If f(0)=f(1)=f(2)=0 and function f(x) is...

If `f(0)=f(1)=f(2)=0` and function f(x) is twice differentiable in (0, 2) and continuous in [0, 2], then which of the following is/are definitely true ?

A

`f''(c)=0, AA c in (0,2)`

B

`f'(c)=0, "for atleast two "c in (0, 2)`

C

`f'(c)=0, "for exactly one "c in (-0,2)`

D

`f''(c)=0,` for atleast one `c in (0,2)`

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Topper's Solved these Questions

  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Statement I And Ii Type Questions)|7 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Passage Based Questions)|8 Videos
  • DY / DX AS A RATE MEASURER AND TANGENTS, NORMALS

    ARIHANT MATHS|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DIFFERENTIATION

    ARIHANT MATHS|Exercise Exercise For Session 10|4 Videos
  • ELLIPSE

    ARIHANT MATHS|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|27 Videos

Similar Questions

Explore conceptually related problems

If f(0)=f(1)=f(2)=0 and function f (x) is twice differentiable in (0, 2) and continuous in [0, 2]. Then, which of the following is(are) true ?

Let f:[0,1]rarrR (the set of all real numbers) be a function. Suppose the function f is twice differentiable, f(0)=f(1)=0 and satisfies f\'\'(x)-2f\'(x)+f(x) ge e^x, x in [0,1] Which of the following is true for 0 lt x lt 1 ? (A) 0 lt f(x) lt oo (B) -1/2 lt f(x) lt 1/2 (C) -1/4 lt f(x) lt 1 (D) -oo lt f(x) lt 0

If f(x) is a twice differentiable function such that f(0)=f(1)=f(2)=0 . Then

Let f[0, 1] -> R (the set of all real numbers be a function.Suppose the function f is twice differentiable, f(0) = f(1) = 0 ,and satisfies f'(x) – 2f'(x) + f(x) leq e^x, x in [0, 1] .Which of the following is true for 0 lt x lt 1 ?

Consider the following in respect of the function f(x)={{:(2+x","xge0),(2-x","xlt0):} 1. lim_(x to 1) f(x) does not exist. 2. f(x) is differentiable at x=0 3. f(x) is continuous at x=0 Which of the above statements is /aer correct?

Consider the following in respect of the function f(x)={{:(2+x,xge0),(2-x,xlt0):} 1. underset(xrarr1)limf(x) does not exist 2. f(x) is differentiable at x = 0 3. f(x) is continuous at x = 0 Which of the above statements is / are correct?

If f(x) is a differentiable function satisfying |f'(x)| le 2 AA x in [0, 4] and f(0)=0 , then