Home
Class 11
MATHS
If a >0, then least value of (a^3+a^2+a...

If `a >0,` then least value of `(a^3+a^2+a+1)^2` is (a)`64 a^2` (b)`16 a^4` (c)`16 a^3` (d)d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If a>0, then least value of (a^(3)+a^(2)+a+1)^(2) is (a)64a^(2)(b)16a^(4)(c)16a^(3) (d)d.none of these

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (c) (16)/7 (d) none of these

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (c) (16)/7 (d) none of these

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 7/(16) (c) (16)/7 (d) none of these

If x lies in the interval [0,\ 1] , then the least value of x^2+x+1 is (a) 3 (b) 3//4 (c) 1 (d) none of these

The value of tan[cos^(-1)(4/5)+tan^(-1)(2/3)] is 6/(17) (b) 17/(6) (c) (16)/7 (d) none of these

Let |[x,2,x],[x^2,x,6],[x,x,6]|=a x^4+b x^3+c x^2+dx+edot Then, the value of 5a+4b+3c+2d+e is equal (a)0 (b) -16 (c) 16 (d) none of these

The value of prod_(k=0)^6 sin\ ((2k+1)pi)/14= (A) 1/16 (B) 1/64 (C) 1/32 (D) none of these

The value of prod_(k=0)^6 sin\ ((2k+1)pi)/14= (A) 1/16 (B) 1/64 (C) 1/32 (D) none of these

The value of tan[cos^(-1)((4)/(5))+tan^(-1)((2)/(3))] is (6)/(17) (b) (7)/(16) (c) (16)/(7) (d) none of these