Home
Class 12
MATHS
The value of sum(n=0)^1sum(i=1rlepi)^n n...

The value of `sum_(n=0)^1sum_(i=1rlepi)^n nC_r sC_r` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)

The value of sum_(r=1)^n(sum_(p=0)^(r-1) ^nC_r ^rC_p 2^p) is equal to (a) 4^(n)-3^(n)+1 (b) 4^(n)-3^(n)-1 (c) 4^(n)-3^(n)+2 (d) 4^(n)-3^(n)

The value of sum_(r=0)^(n)sum_(s=1)^(n)*^(n)C_(5)*^(s)C_(r) is

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

The value of sum_(r=0)^(3n-1)(-1)^(r)6nC_(2r+1)3^(r) is

The value of sum_(r=1)^(n)(sum_(p=0)^(n)nC_(r)^(r)C_(p)2^(p)) is equal to

The value of sum_(r=0)^(n-1) (""^nC_r)/(""^nC_r+ ""^n C_(r+1)) equals a. n+1 b. n/2 c. n+2 d. none of these

The value of sum_(r=0)^(n-1)(nC_(r))/(nC_(r)+^(n)C_(r+1)) is eqaul to

The value of sum_(r=1)^(n)(-1)^(r+1)(^nCr)/(r+1) is equal to a.-(1)/(n+1) b.(1)/(n) c.(1)/(n+1) d.(n)/(n+1)