Home
Class 12
MATHS
Prove that det ((yx-x^2,zx-y^2,xy-z^2),(...

Prove that `det ((yx-x^2,zx-y^2,xy-z^2),(zx-y^2,xy-z^2,yz-x^2),(xy-z^2,yz-x^2,zx-y^2))` is divisible by (x+y+z) and hence find the quotient.

Text Solution

Verified by Experts

`Delta = |[yz-x^2,zx-y^2,xy-z^2],[zx-y^2,xy-z^2,yz-x^2],[xy-z^2,yz-x^2,zx-y^2]|`
Applying `C_1->C_1+C_2+C_3`
`Delta = |[xy+yz+zx-x^2-y^2-z^2,zx-y^2,xy-z^2],[xy+yz+zx-x^2-y^2-z^2,xy-z^2,yz-x^2],[xy+yz+zx-x^2-y^2-z^2,yz-x^2,zx-y^2]|`
`= (xy+yz+zx-x^2-y^2-z^2)|[1,zx-y^2,xy-z^2],[1,xy-z^2,yz-x^2],[1,yz-x^2,zx-y^2]|`
Now, applying `R_1->R_1-R_3` and `R_2->R_2-R_3`
`= (xy+yz+zx-x^2-y^2-z^2)|[0,zx-y^2-yz+x^2,xy-z^2-zx+y^2],[0,xy-z^2-yz+x^2,yz-x^2-zx+y^2],[1,yz-x^2,zx-y^2]|`
`= (xy+yz+zx-x^2-y^2-z^2)|[0,(x-y)(x+y+z),(y-z)(x+y+z)],[0,(x-z)(x+y+z),(y-x)(x+y+z)],[1,yz-x^2,zx-y^2]|`
`= (xy+yz+zx-x^2-y^2-z^2)(x+y+z)^2|[0,(x-y),(y-z)],[0,(x-z),(y-x)],[1,yz-x^2,zx-y^2]|`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[yz-x^2,zx-y^2,xy-z^2],[zx-y^2,xy-z^2,yz-x^2],[xy-z^2,yz-x^2,zx-y^2]| is divisible by (x+y+z), and hence find the quotient.

yz-x^(2)quad zx-y^(2)quad xy-z^(2)| Prove that det[[yz-x^(2),zx-y^(2),xy-z^(2)zx-y^(2),xy-z^(2),yz-x^(2)xy-z^(2),yz-x^(2),zx-y^(2)]] is divisible by (x+y+z), and hence find the quotient.

|(x^(2),y^(2)+z^(2),yz),(y^(2),z^(2)+x^(2),zx),(z^(2),x^(2)+y^(2),xy)| is divisible by

Prove that: |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)

Show that Delta=|((y+z)^2,xy,zx),(xy,(x+z)^2,yz),(xz,yz,(x+y)^2)|=2x y z(x+y+z)^3 .

Prove that |(x,x^2,yz),(y,y^2,zx),(z,z^2,xy)|= (x-y)(y-z)(z-x)(xy + yz + zx) .

Show that |[yz-x^2, zx-y^2, xy-y^2] , [zx-y^2, xy-z^2, yz-x^2] , [xy-z^2, yz-x^2, zx-y^2]|= |[r^2, u^2, u^2] , [u^2, r^2, u^2] , [u^2, u^2, r^2]| where r^2 = x^2+y^2+z^2 and u^2= xy+yz+zx

Factorise : |{:(x,y,z),(x^2,y^2,z^2),(yz,zx,xy):}|