Home
Class 12
MATHS
tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=...

tan^(-1)(x-1)/(x-2)+tan^(-1)(x+1)/(x+2)=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the equation (tan^(-)(x-1))/(x-2)+(tan^(-1)(x+1))/(x+2)=(pi)/(4)

Solve: "tan"^(-1)(x-2)/(x-2) + "tan"^(-1) (x+1)/(x+2)=pi/4

tan^(-1)((2x-1)/(10))+tan^(-1 )(1/(2x))=(pi)/(4) , then x is equal to

Solve the following equations. tan^-1 (x-1)/(x-2) + tan6-1 (x+1)/(x+2) = pi/4

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

Prove that : tan^(-1).(x)/(x+1)- tan ^(-1) (2x +1) = (3pi)/(4)

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4

Solve for x : tan^(-1)((x-2)/(x-1))+tan^(-1)((x+2)/(x+1))=pi/4