Home
Class 8
MATHS
If sqrt (1+(49)/(576))=1+x/(24), then th...

If `sqrt (1+(49)/(576))=1+x/(24)`, then the value of x is

Text Solution

Verified by Experts

`1 + 49/576 = (1 + x/24)^2`
`1+ 49/576 = 1 + x^2/576 + 2x/24`
`49/24 = x^2/24 + 2x`
`49/24 = (x^2 + 48x)/24`
`x^2 + 48x - 49 = 0`
`x^2 + 49x - x - 49= 0`
`(x+49)(x-1) = 0`
`x=-49, 1`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sqrt((sqrt(5)+1)/(sqrt(5)-1)), then the value of x= of 5x^(2)-5x-1 is

If x^((1)/(12))=49^((1)/(24)) , Find the value of x.

sqrt(x)-sqrt(1-x)=(1)/(5) and sqrt(x)+sqrt(1-x)=(7a)/(5) then the value of a is :

If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

If x^((1)/(12))=219^((1)/(24)) what is the value of x?