Home
Class 12
MATHS
If a,b,c,in R^(+), such that a+b+c=18, t...

If `a,b,c,in R^(+)`, such that `a+b+c=18`, then the maximum value of `a^2,b^3,c^4` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c,d in R^(+) such that a+b+c=18 then the maximum value of a^(2)b^(3)c^(4) is equal to 2^(18)xx3^(2)2^(18)xx3^(3)2^(19)xx3^(2)2^(18)xx3^(3)

If a ,b ,c ,d in R^+ such that a+b+c=18 , then the maximum value of a^2b^3c^4 is equal to a. 2^(18)xx3^2 b. 2^(18)xx3^3 c. 2^(19)xx3^2 d. 2^(19)xx3^3

If a ,b ,c ,d in R^+ such that a+b+c=18 , then the maximum value of a^2b^3c^4 is equal to a. 2^(18)xx3^2 b. 2^(18)xx3^3 c. 2^(19)xx3^2 d. 2^(19)xx3^3

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

If a, b, c in R^(+) such that a+b+c=27 , then the maximum value of a^(2)b^(3)c^(4) is equal to

If a,b,c in R^(+) such that a+b+c=21 then the maximum value of a^(2)b^(3)c^(2) is equal to

If a,b,c are positive real numbers such that a + b +c=18, find the maximum value of a^2b^3c^4

If a,b,c are positive real numbers such that a +b+c=18, find the maximum value of a^(2)b^(3)c^(4)

If a ,b ,c in R^+ , then the minimum value of a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) is equal to (a) a b c (b) 2a b c (c) 3a b c (d) 6a b c