Home
Class 12
MATHS
If z(1) and z(2) are to complex numbers ...

If `z_(1)` and `z_(2)` are to complex numbers such that two `|z_(1)|=|z_(2)|+|z_(1)-z_(2)|`, then arg `(z_(1))-"arg"(z_(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_(1), and z_(2) are the two complex numbers such that|z_(1)|=|z_(2)|+|z_(1)-z_(2)| then find arg(z_(1))-arg(z_(2))

If z_(1) and z_(2), are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then arg(z_(1))-arg(z_(2)) is equal to (1)0(2)-(pi)/(2) (3) (pi)/(2)(4)-pi

If z_(1) and z_(2), are two non-zero complex numbers such tha |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then arg(z_(1))-arg(z_(2)) is equal to

State true of false for the following: Let z_(1) and z_(2) be two complex number's such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| then arg (z_(1)-z_(2))=0

If z_(1) and z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| , then arg. z_(1)- arg. z_(2) equals :

If z_(1)&z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)|, then arg (z_(1))-arg(z_(2)) is equal to a.-pi b.-(pi)/(2)c*(pi)/(2) d.0

If z_(1)" and "z_(2) are two non-zero complex numbers such that |z_(1)+z_(2)|=|z_1|+|z_(2)| , then arg z_(1)- arg z_(2) is equal to

Consider z_(1)andz_(2) are two complex numbers such that |z_(1)+z_(2)|=|z_(1)|+|z_(2)| Statement -1 arg (z_(1))-arg(z_(2))=0 Statement -2 The complex numbers z_(1) and z_(2) are collinear.