Home
Class 11
MATHS
Prove that |[a,a^2,1+pa^3] , [b,b^2,1+pb...

Prove that `|[a,a^2,1+pa^3] , [b,b^2,1+pb^3] , [c,c^2,1+pc^3]|=(1+pabc)(a-b)(b-c)(c-a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: |[1,a^2+bc, a^3],[ 1,b^2+c a, b^3],[ 1,c^2+a b, c^3]|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

|[a,a^2,a^3-1],[b,b^2,b^3-1],[c,c^2,c^3-1]|=0 prove that abc= I

Prove that |[1 , a , a^3],[ 1, b, b^3],[ 1, c, c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that |[1,a,a^3],[1,b,b^3],[1,c,c^3]|=(a-b)(b-c)(c-a)(a+b+c)

Prove that det[[1,a^(2)+bc,a^(3)1,b^(2)+ca,b^(3)1,c^(2)+ca,c^(3)]]=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))det[[1,b^(2)+ca,b^(3)1,c^(2)+ca,c^(3)]]=-(a-b)(b-c)(c-a)(a^(2)+b^(2)+c^(2))

If b ne c and |[a , a^2, 1+a^3],[ b, b^2, 1+b^3],[ c, c^2, 1+ c^3]| =0 then prove that a b c =-1

Prove that |(1, a, a^3),(1, b, b^3),(1, c, c^3)| = (a-b)(b-c)(c-a)(a+b+c).

Prove |{:(1,a^2+bc,a^3),(1,b^2+ca,b^3),(1,c^2+ab,c^3):}|=-(a-b)(b-c)(c-a)(a^2+b^2+c^2)

If [[a,a^(2),a^(3)-1b,b^(2),b^(3)-1c,c^(2),c^(3)-1]]=0