Home
Class 12
MATHS
If veca, vecb, vecc are non coplanar vec...

If `veca, vecb, vecc` are non coplanar vectors and `vecp, vecq, vecr` are reciprocal vectors, then
`(lveca+mvecb+nvecc).(lvecp+mvecq+nvecr)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca , vecb and vecc are three non-coplanar vectors and vecp , vecq and vecr are vectors defined by vecp = (vecb xx vecc)/([veca vecb vecc]) , vecq = (vecc xx veca)/([veca vecb vecc]) and vecr = (veca xx vec b)/([veca vecb vec c]) , then the value of (veca + vecb) * (vecb + vecc) * vecq + (vecc + vec a) * vecr =

If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors, then vecaxxvecp+vecbxxvecq+veccxxvecr equals

If veca, vecb, vecc are three non-coplanar vectors, then [veca+ vecb + vecc veca - vecc veca-vecb] is equal to :

If veca , vecb , vecc are three non-coplanar vector and vecp , vecq vecr are defind by the relations vecp=(vecbxxvecc)/([vecavecbvecc]) , vecq=(veccxxveca)/([vecavecbvecc]) , vecr=(vecaxxvecb)/([vecavecbvecc]) , then vecp.(veca+vecb)+vecq.(vecb+vecc)+vecr.(vecc+veca) =............

If veca,vecb,vecc and vecp,vecq,vecr are reciprocal system of vectors, then vecaxxvecp+vecbxxvecq+veccxxvecc equals

Let veca, vecb, vecc be three non-coplanar vectors and vecp,vecq,vecr be the vectors defined by the relations. vecp=(vecbxxvecc)/([(veca, vecb, vecc)]),vecq=(veccxxveca)/([(veca, vecb, vecc)]),vecr=(veccxxveca)/([(veca,vecb,vecc)]) Then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr is equal to

Let veca,vecb,vecc be three noncolanar vectors and vecp,vecq,vecr are vectors defined by the relations vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) then the value of the expression (veca+vecb).vecp+(vecb+vecc).vecq+(vecc+veca).vecr . is equal to (A) 0 (B) 1 (C) 2 (D) 3

Let veca, vecb, vecc be three non - zero, non - coplanar vectors and vecp, vecq, vecr be three vectors given by vecp=veca+2vecb-2vecc, vecq=3veca+vecb -3vecc and vecr=veca-4vecb+4vecc . If the volume of parallelepiped determined by veca, vecb and vecc is v_(1) cubic units and volume of tetrahedron determined by vecp, vecq and vecr is v_(2) cubic units, then (v_(1))/(v_(2)) is equal to