Home
Class 12
MATHS
Show that it the curves ax^(2) +by^(2)=1...

Show that it the curves `ax^(2) +by^(2)=1 " and " Ax^(2) +By^(2) =1` are orthogonal then ab(A-B)=AB(a-b).

Promotional Banner

Similar Questions

Explore conceptually related problems

If the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 are orthogonally then …………

The curves ax^(2)+by^(2)=1 and Ax^(2)+B y^(2) =1 intersect orthogonally, then

If the curve ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 intersect orthogonally, then

The curves ax^2+by^2=1 and Ax^2+By^2=1 intersect orthogonally, then

If ax^(2)+by^(2)=1 cute a'x^(2)+b'y^(2)=1 orthogonally, then

If ax^(2)+by^(2)=1 cute a'x^(2)+b'y^(2)=1 orthogonally, then

If ax^(2)+by^(2)=1 cut a'x^(2)+b'y^(2)=1 orthogonally, then

If ax^(2)+by^(2)=1 cut a'x^(2)+b'y^(2)=1 orthogonally, then

Show the condition that the curves ax^(2)+by^(2)=1 and a'x^(2)+b'y^(2)=1 should intersect orthogonally is (1)/(a)-(1)/(b)=(1)/(a')-(a)/(b)