Home
Class 12
MATHS
" of "tan(x^(n))...

" of "tan(x^(n))

Promotional Banner

Similar Questions

Explore conceptually related problems

Evalute the following integrals int (sec x)/((sec x +tan x )^(n)) dx

If int(dx)/(sqrt(x)(1+x))=m tan^(-1)(x^(n)), prove that m*n=1

int(sec xdx)/((sec x+tan x)^(5))=((sec x+tan x)^(n))/(n)+c then n=

int_(0)^((pi)/(2))(sec^(2)xdx)/((sec x+tan x)^(n))

The period of f(x)=sin x + tan (x/2) + sin (x/2^(2))+tan (x/2^(3))+ ------- + sin ((x)/(2^(n-1)))+tan((x)/(2^(n)))

Find the period of f(x)=sin x+tan(x)/(2)+sin(x)/(2^(2))+tan(x)/(2^(3))+...+sin(x)/(2^(n-1))+tan(x)/(2^(n))

f(x)=tan(x/2)sec x+tan(x/2^(2))sec(x/2)+tan(x/2^(3))sec(x/2^(2))+.....+tan(x/2^(n))*sec(x/2^(n-1)) and g(x)=f(x)+tan((x)/(2^(n))) where x in(-(pi)/(2),(pi)/(2)) and n in N then g(x) is

Let f(x)=lim_(n rarr oo)(cos x)/((1+tan^(-1)x)^(n)), then int_(0)^(oo)f(x)dx=

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to

Let f(x)=lim_( n to oo)(cosx)/(1+(tan^(-1)x)^(n)) . Then the value of int_(o)^(oo)f(x)dx is equal to