Home
Class 12
MATHS
If vec axx vec b= vec bxx vec c!=0,w h ...

If ` vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c` are coplanar vectors, then for some scalar `k` prove that ` vec a+ vec c=k vec bdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

vec a xxvec b=vec b xxvec c!=0, where vec a,vec b, and vec c are coplanar vectors,then for some scalar k prove that vec a+vec c=kvec b

If vec a xxvec b=vec b xxvec c!=0, where vec a,vec b and vec c are coplanar vectors,then for some scalar k

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then (a) vec a , vec b ,a n d vec c can be coplanar (b) vec a , vec b ,a n d vec c must be coplanar (c) vec a , vec b ,a n d vec c cannot be coplanar (d)none of these

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then 1. vec a , vec b ,a n d vec c can be coplanar 2. vec a , vec b ,a n d vec c must be coplanar 3. vec a , vec b ,a n d vec c cannot be coplanar 4.none of these

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then 1. vec a , vec b ,a n d vec c can be coplanar 2. vec a , vec b ,a n d vec c must be coplanar 3. vec a , vec b ,a n d vec c cannot be coplanar 4.none of these

If vec rdot vec a= vec rdot vec b= vec rdot vec c=0,w h e r e vec a , vec b ,a n d vec c are non-coplanar, then a. vec r_|_( vec cxx vec a) b. vec r_|_( vec axx vec b) c. vec r_|_( vec bxx vec c) d. vec r= vec0

If vec rdot vec a= vec rdot vec b= vec rdot vec c=0,w h e r e vec a , vec b ,a n d vec c are non-coplanar, then vec r_|_( vec cxx vec a) b. vec r_|_( vec axx vec b) c. vec r_|_( vec bxx vec c) d. vec r= vec0

If vec r . vec a= vec r . vec b= vec r . vec c=0,w h e r e vec a , vec b ,and vec c are non-coplanar, then a. vec r_|_( vec cxx vec a) b. vec r_|_( vec axx vec b) c. vec r_|_( vec bxx vec c) d. vec r= vec0

Let vec r=( vec axx vec b)sinx+( vec bxx vec c)cosy+2( vec cxx vec a),w h e r e vec a , vec ba n d vec c are there non-coplanar vectors. It is given that vec r is perpendicular to vec a+ vec b+ vec c , the minimum value of x^2+y^2 is equal to (A) pi^2 (B) (pi^2)/4 (C) (5pi^2)/4 (D) none of these

If vec axx vec b= vec bxx vec c!=0 , then show that vec a+ vec c=m vec b , where m is any scalar.