Home
Class 10
MATHS
Prove that: sin^4 theta - cos^4 theta=...

Prove that:
`sin^4 theta - cos^4 theta= 1-2 cos^2 theta`.

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    TARGET PUBLICATION|Exercise Practice Set 6.2|6 Videos
  • TRIGONOMETRY

    TARGET PUBLICATION|Exercise Problem set - 6|22 Videos
  • TRIGONOMETRY

    TARGET PUBLICATION|Exercise Chapter Assessment|18 Videos
  • STATISTICS

    TARGET PUBLICATION|Exercise Problem Set-6|21 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

Prove that : (sin^(4)theta- cos^(4) theta+ 1) "cosec"^(2)theta=2

Prove that cos^4 theta-sin^4 theta=1-2sin^2 theta

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

Prove that sin theta cos^(3)theta - cos theta sin^(3) theta = (1)/(4) sin 4 theta .

Prove that sin^(4)theta+cos^(4)theta=1-(1)/(2)sin^(2)2 theta=(1)/(2)(1+cos^(2)2 theta)

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta

Prove that : cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta