Home
Class 10
MATHS
If sin theta=(5)/(13) , then find cos th...

If sin `theta=(5)/(13)` , then find cos `theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \cos \theta \) given that \( \sin \theta = \frac{5}{13} \), we can follow these steps: ### Step 1: Understand the relationship between sine and cosine We know that: \[ \sin \theta = \frac{\text{opposite}}{\text{hypotenuse}} \] From the given information, we can identify: - Opposite side (perpendicular) = 5 - Hypotenuse = 13 ### Step 2: Use the Pythagorean theorem to find the base According to the Pythagorean theorem: \[ \text{hypotenuse}^2 = \text{opposite}^2 + \text{adjacent}^2 \] Let the adjacent side (base) be \( b \). Thus, we can write: \[ 13^2 = 5^2 + b^2 \] Calculating the squares: \[ 169 = 25 + b^2 \] ### Step 3: Solve for the base Now, we can rearrange the equation to solve for \( b^2 \): \[ b^2 = 169 - 25 \] \[ b^2 = 144 \] Taking the square root of both sides gives us: \[ b = \sqrt{144} = 12 \] ### Step 4: Find \( \cos \theta \) Now that we have the base (adjacent side), we can find \( \cos \theta \): \[ \cos \theta = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{b}{\text{hypotenuse}} = \frac{12}{13} \] ### Final Answer Thus, the value of \( \cos \theta \) is: \[ \cos \theta = \frac{12}{13} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin theta=(3)/(5), then find the values of cos theta and tan theta

if sin theta = 5/13 , find the value of cos theta

If cos ec theta=(13)/(5) then find tan theta and cot theta

If sin theta+cos theta=(5)/(4) then find the value of sin^(6)theta+cos^(6)theta+7sin^(2)theta*cos^(2)theta

If tan theta=(12)/(13) then value of (2sin theta cos theta)/(cos^(2)theta-sin^(2)theta) is

sin theta=(4)/(5 then find (4tan theta-5cos theta)/(sec theta+4cot theta)