Home
Class 10
MATHS
Verify whether P(-2,2) , Q(2,2) and R(2,...

Verify whether P(-2,2) , Q(2,2) and R(2,7) are the vertices of a
right angled triangle or not by completing the following acitvity.
` PQ= sqrt([2-(-2)]^(2) + (2-2)^(2)) = square ` …(1)
`QR = sqrt((2-2)^(2) + 97-2)^(2)) = 5` …(2)
` PR = sqrt([2-(-2)]^(2) + (7-2)^(2))= square ` ...(3)
from (1),(2),(3)
` PR^(2) = square , QP^(2) + QR^(2) = square `
` therefore PR^(2) square PQ^(2) + QR^(2)[ = or ne ]`
` therefore triangle "PQR" square ` a right angled triangle [is /is not]

Text Solution

Verified by Experts

With verification `P(-2,2),Q(2,2)` and `R(2,7)`
By distance formula.
`PQ=sqrt([2-(-2)]^(2)+(2-2)^(2))`
`:.PQ=sqrt(4^(2)+0^(2))`
`:.PQ=sqrt(16)`
`:.PQ=4` ………….1
`QR=sqrt((2-2)^(2)+(7-2)^(2))`
`:.QR=sqrt(0^(2)+5^(2))`
`:.QR=sqrt(25)`
`:.QR=5`........2
`PR=sqrt([2-(-2)]^(2)+(7-2)^(2))`
`:.PR=sqrt(4^(2)+5^(2))`
`:.PR=sqrt(16+25)`
`:.PR=sqrt(41)`
`PQ^(2)+QR^(2)=4^(2)+5^(2)=16+25=41`
.......[From 1 and 2 ] ..........3
`PR^(2)=(sqrt(41))^(2)=41`...............4
`:.PQ^(2)+QR^(2)=PR^(2)` ......[From 3 and 4 ]
`:.` by converse of Pythagoras theorem,
`DeltaPQR` is a right angled triangle.
i.e. `P(-2,2),Q(2,2) and `R(2,7)` are the vertices of a right angled triangle.
Promotional Banner

Similar Questions

Explore conceptually related problems

In DeltaPQR , PQ^(2)=PR^(2)+QR^(2) then state which angle will be the right angle.

Square root of 3/2 (x - 1) + sqrt(2x^2 - 7 x - 4) is

(7^((-1/2))xx5^(2))^(2)+sqrt(25^(3))=

M and N are the points on sides QR and PQ respectively of a trianglePQR , right angled at Q. prove that PM^(2) + RN^(2)= PR^(2)+MN^(2)

Points P(a,-4),Q(-2,b) and R(0,2) are collinear,such that PR=2QR. Calculate the values of a andb.

If (0,1),(1,1) and (1,0) be the middle points of the sides of a triangle,its incentre is (2+sqrt(2),2+sqrt(2))( b) [2+sqrt(2),-(2+sqrt(2))](2-sqrt(2),2-sqrt(2)) (d) [2-sqrt(2),(2+sqrt(2))]