Home
Class 10
MATHS
Show that points P(2,-2) , Q (7,3) ,R(11...

Show that points P(2,-2) , Q (7,3) ,R(11,-1) and S(6,-6)
are vertices of a parallelogram.

Text Solution

Verified by Experts

Proof:
`P(2,-2),Q(7,3),R(11 ,-1)` and `S(6,-6)`
By distance formula.
`PQ=sqrt((7-2)^(2)+[3-(-2)]^(2))`
`:.PQ=sqrt(5^(2)+5^(2))`
`:.PQ=sqrt(5^(2)+5^(2))`
`:.PQ=sqrt(25+25)`
`:.PQ=sqrt(50)`
`:.PQ=sqrt(5xx5xx2)`
`:.PQ=5sqrt(2)` ........1
`QR =sqrt((11-7)^(2)+(-1-3)^(2))`
`:.QR=sqrt(4^(2)+(-4)^(2))`
`:.QR=sqrt(16+16)`
`:.QR=sqrt(32)`
`:.QR=sqrt(2xx2xx2xx2xx2)`
`:.QR=4sqrt(2)` ..........2
`RS=sqrt((6-11)^(2)+[-6-(-1)]^(2))`
`:.Rs=sqrt((-5)^(2)+(-5)^(2))`
`:.RS=sqrt(25+25)`
`:.RS=sqrt(50)`
`:.RS=sqrt(5xx5xx2)`
`:.RS=5sqrt(2)`...........3
`PS=sqrt((6-2)^(2)+[-6-(-2)]^(2))`
`:.PS=sqrt(4^(2)+(-4)^(2))`
`:.PS=sqrt(16+16)`
`:.PS=sqrt(32)`
`:.PS=sqrt(2xx2xx2xx2xx2)`
`:.PS=2xx2xxsqrt(2)`
`:.PS=4sqrt(2)`.............4
In `square PQRS`
`PQ=RS` .......[From 1 and 3]
`QR=PS`......[From 2 and 4]
A quadrilaterial is a parallelogram, if both the pairs of its opposite sides are congruent.
`:.square PQRS` is a parallelogram.
`P(2,-2),Q(7,3),R(11,-1)` and `S(6,-6)` are vertices of a parallelogram.
Promotional Banner

Similar Questions

Explore conceptually related problems

Show that points P(1,-2),Q(5,2),R(3,-1),S(-1,-5) are the vertices of a parallelogram.

Show that the points A(1,-2),B(3,6),C(5,10) and D(3,2) are the vertices of a parallelogram.

Show that the points A(1,0),B(5,3),C(2,7) and D(-2,4) are the vertices of a parallelogram.

If the points P(a, -11), Q(5, b), R(2, 15) and S(1, 1) are the vertices of a parallelogram PQRS, find the values of a.

Show that four points (1, -2), (3, 6), (5, 10) and (3, 2) are the vertices of a parallelogram.

Prove that the points (3, 2), (6, 3), (7, 6) and (4, 5) are the vertices of a parallelogram. Is it a rectangle?

Show that the points P(2,1), Q(-1,3) , R (-5,-3) and S (-2,-5) are the vertices of a square .

Prove that the points (-1, -2), (-2, -5), (-4, -6) and (-3, -3) are the vertices of a parallelogram.