Home
Class 12
MATHS
int e^(tan^(-1)x)(1+x+x^(2))*d(cot^(-1)x...

int e^(tan^(-1)x)(1+x+x^(2))*d(cot^(-1)x)=equal" to,"

Promotional Banner

Similar Questions

Explore conceptually related problems

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to

inte^(tan^(-1)x)(1+x+x^(2))*d(cot^(-1)x) is equal to

int e^(tan^(-1)x)(1+x+x^(2))d(cot^(-1)x) is equal to -e^(tan^(-1)x)+c(b)e^(tan^(-1)x)+c-xe^(tan^(-1)x)+c(d)xe^(tan-1)x+c

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c

int e^(tan^-1x)(1+x+x^2) d(cot^-1x) is equal to

int (e^(cot^(-1)x))/(1+x^(2))dx

int(1+tan^(2)x)/(1+cot^(2)x)dx

int(1+tan^(2)x)/(1+cot^(2)x)dx-

int x(e^(tan^(-1)x^(2)))/(x^(4)+1)dx equals