Home
Class 12
MATHS
lf g(x) is invertible function and h(x)=...

lf g(x) is invertible function and `h(x)=2g(x)+5`, then the value of `h^(-1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x) is 2f^(-1)(x)-5( b )(1)/(2f^(-1)(x)+5)(1)/(2)f^(-1)(x)+5( d) f^(-1)((x-5)/(2))

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s (a) 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

If f(x) is an invertible function and g(x)=2f(x)+5, then the value of g^(-1)(x)i s (a) 2f^(-1)(x)-5 (b) 1/(2f^(-1)(x)+5) 1/2f^(-1)(x)+5 (d) f^(-1)((x-5)/2)

If f(x) is an invertible function and g(x) = 2f(x) + 5 , then the value of g^(-1)(x) is

[" 8.Let "f(x)=a^(1)(a>0)" be written as "f(x)=g(x)+h(x)," where "g(x)" is an even "],[" function and "h(x)" is an odd function.Then the value of the "g(x+y)+g(x-y)" is "],[[" A) "2g(x)g(y)," B) "2g(x+y)g(x-y)],[" C) "2g(x)," D) "g(x)-g(y)]]

Let g(x)=|x-2| and h(x)=g(g(x)) be two functions, then the value of h'(-1)+h'(1)+h'(3)+h'(5) is equal to (where, h' denotes the derivative of h)

Let g(x)=|x-2| and h(x)=g(g(x)) be two functions, then the value of h'(-1)+h'(1)+h'(3)+h'(5) is equal to (where, h' denotes the derivative of h)