Home
Class 12
MATHS
If veca, vecb and vecc are unit coplanar...

If `veca, vecb` and `vecc` are unit coplanar vectors, then the scalar triple product `[(2veca-vecb, 2vecb-vecc, 2vecc-veca)]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product : [2veca-vecb, vec2b-vecc,vec2c-veca]=

If veca, vecb and vecc are unit coplanar vectors , then the scalar triple porduct [2 veca -vecb" " 2vecb - vecc " "2vecc-veca] is

If veca, vecb and vecc are unit coplanar vectors , then the scalar triple porduct [2 veca -vecb" " 2vecb - vecc " "2vecc-veca] is

Let veca,vecb and vecc be three vectors. Then scalar triple product [veca vecb vecc] is equal to

Let veca,vecb and vecc be three vectors. Then scalar triple product [veca vecb vecc] is equal to

If veca ,vecb and vecc are three mutually orthogonal unit vectors , then the triple product [(veca+vecb+vecc,veca+vecb, vecb +vecc)] equals

If veca ,vecb and vecc are three mutually orthogonal unit vectors , then the triple product [veca+vecb+vecc veca+vecb vecb +vecc] equals

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23veca)]

If veca, vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,10vecc-23veca)]

If veca,vecb and vecc are unit coplanar vectors, then [(2veca-3vecb,7vecb-9vecc,12vecc-23vecb)] is equal to