Home
Class 12
MATHS
If [x] denotes the greatest integer less...

If [x] denotes the greatest integer less than or equal to x then `lim_(n->oo)([x]+[2x]+[3x]+.....+[nx])/n^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If [x] denotes the greatest integer less than or equal to x then +[3x]+....+[nx]lim_(n rarr oo)([x]+[2x]+[3x]+......+[nx])/(n^(2))

if [x] denotes the greatest integer less than or equal to x, than lim_(xrarr0)(x[x])/(sin|x|) , is

If [x] denotes the greatest integer less than or equal to x then int_(1)^(oo) [(1)/(1+x^(2))]dx=

Let [x] denotes the greatest integer less than or equal to x and f(x)= [tan^(2)x] .Then

If [x] denotes the greatest integer less than or equal to x, then Lt_(n rarr oo)([1^(5)x]+[2^(5)x]+[3^(5)x]+......+[n^(5)x])/(n^(6))=

Let [x] denotes the greatest integer less than or equal to x and f(x)=[tan^(2)x] . Then

If [x] denotes the greatest integer less then or equal to x, then [ (6sqrt(6) + 14)^(2n +1)]

If [x] denotes the greatest integer less then or equal to x, then [ (6sqrt(6) + 14)^(2n +1)]

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).

If [x] denotes the greatest integer less than or equal to x, then evaluate lim_(ntooo) (1)/(n^(2))([1.x]+[2.x]+[3.x]+...+[n.x]).