Home
Class 12
MATHS
f(x)={(x[x],if 0 le x< 3),((x-1)[x],if 3...

`f(x)={(x[x],if 0 le x< 3),((x-1)[x],if 3lexle4))` where `[x]` is the greatest integer function. The function `f(x)` is (A) continuous and differentiable at x=3 (B) continuous at x=1,2,3 (C) continuous but not differentiable at x=3 (D) discontinuous at x=1,2,3

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then continutity and diffrentiability of f(x)

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then continutity and diffrentiability of f(x)

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then (x) is continuous at x=2

If f(x)={{:(,x[x], 0 le x lt 2),(,(x-1)[x], 2 le x lt 3):} where [.] denotes the greatest integer function, then

Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]= greatest integer less than or equal to x, then: The number of values of x for x in [0,3] where f (x) is dicontnous is:

Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]= greatest integer less than or equal to x, then: The number of values of x for x in [0,3] where f (x) is non-differentiable is :

Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]= greatest integer less than or equal to x, then: The number of values of x for x in [0,3] where f (x) is dicontnous is:

Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]= greatest integer less than or equal to x, then: The number of values of x for x in [0,3] where f (x) is non-differentiable is :

Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]= greatest integer less than or equal to x, then: The number of integers in the range of y =f (x) is:

Let f (x)= {{:(x [x] , 0 le x lt 2),( (x-1), 2 le x le 3):} where [x]= greatest integer less than or equal to x, then: The number of integers in the range of y =f (x) is: