Home
Class 12
MATHS
The number of ordered triplets (x,y,z) s...

The number of ordered triplets `(x,y,z)` satisfy the equation `(sin^(- 1)x)^2=(pi^2)/4+(sec^(- 1)y)^2+(tan^(- 1)z)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are natural numbers such that cot ^(-1)x+cot^(-1)y=cot^(-1)z then the number of ordered triplets (x,y,z) that satisfy the equation is 0 (b) 1 (c) 2 (d) Infinite solutions

If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1)z then the number of ordered triplets (x , y , z) that satisfy the equation is 0 (b) 1 (c) 2 (d) Infinite solutions

If x, y, z are natural numbers such that cot^(-1) x + cot^(-1)y= cot^(-1) z then the number of ordered triplets (x, y, z) that satisfy the equation is a)0 b)1 c)2 d)infinite solutions

If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1)z then the number of ordered triplets (x , y , z) that satisfy the equation is (a)0 (b) 1 (c) 2 (d) Infinite solutions

If x , y , z are natural numbers such that cot^(-1)x+cot^(-1)y=cot^(-1)z then the number of ordered triplets (x , y , z) that satisfy the equation is 0 (b) 1 (c) 2 (d) Infinite solutions

Let N be the number of triplets (x,y,z) where x,y,z in[0,2 pi] satisfying the inequality (4+sin4x)(2+cot^(2)-y)(1+sin^(4)+z)<12sin^(2)-z Find the value of (N)/(2)

Find the number of triplets (x, y, z) of integers satisfying the equations x + y = 1 - z and x^(3) + y^(3) =1-z^(2) (where z ne 1 )

Find number of triplets (x,y,z) satisfying the system (9x^(2))/(1+9x^(2))=(3)/(2)y,(9y^(2))/(1+9y^(2))=(3)/(2)z,(9z^(2))/(1+9z^(2))=(3)/(2)x

The number of triple satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi is

The number of triple satisfying sin^(-1)x+cos^(-1)y+sin^(-1)z=2pi is