Home
Class 12
MATHS
If the point (1, a) lies in between the ...

If the point `(1, a)` lies in between the lines `x + y =1` and `2(x+y) = 3` then `a` lies in (i)`(-infty,0)cup (1,infty)` (ii)`(0,1/2)` (iii)`(-infty,0)cup (1/2,infty)` (iv) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If the point (1,a) lies in between the lines x+y=1 and 2(x+y)=3 then a lies in (i)(-oo,0)uu(1,oo)(ii)(0,(1)/(2))(iii)(-oo,0)uu((1)/(2),oo)(iv) none of these

Let f^(prime)(x)>0 AA x in R and g(x)=f(2-x)+f(4+x). Then g(x) is increasing in (i) (-infty,-1) (ii) (-infty,0) (iii) (-1,infty) (iv) none of these

If x satisfies the inequations 2x-7 lt 11 and 3x+4 lt- 5 , then x lies in the interval a) (-infty,3) b) (-infty,2) c) (-infty,-3) d) (-infty,infty)

The domain of f(x)=log_x 12 is (i) (0,infty) (ii ) (0,1)cup (1,infty) (iii) (-infty,0) (iv) (2,12)

The exhaustive values of x for which f(x) = tan^-1 x - x is decreasing is (i) (1,infty) (ii) (-1,infty) (iii) (-infty,infty) (iv) (0,infty)

The function f(x)= [x(x-2)]^2 is increasing in the set a) (-infty,0) cup (2,infty) b) (-infty,1) c) (0,1)cup(2,infty) d) ( 1 , 2 )

The solution set of the inequation ||x|-1| < | 1 – x|, x in RR, is (i)(-1,1) (ii)(0,infty) (iii)(-1,infty) (iv) none of these

The function f(x)=1/(1+x^2) is decreasing in the interval (i) (-infty,-1) (ii) (-infty,0) (iii) (1,infty) (iv) (0,infty)

The solution set of the inequation ||x|-1| < | 1 – x|, x in RR, is (i) (-1,1) (ii) (0,infty) (iii) (-1,infty) (iv) none of these

Find the domain of the following y = tan^(-1) ( sqrt (x^(2) - 1)) a. (-infty,-2]cup[1, infty) b. (-infty,-1] c. (-infty,-1]cup[2, infty) d. (-infty,-1]cup[1, infty)