Home
Class 11
MATHS
Let y= f(x) be a parametrically defined...

Let `y= f(x)` be a parametrically defined expression such that `x=3t^2-18t +7` and `y=2t^3-15t^2+24t+10,AA t in [0,6]` Then the minimum and maximum values of `y=f(x)` are (A) 36,3 (B) 46,6 (C) 40,-6 (D) 46,-6

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function y=f(x) is represented as x=phi(t)=t^5-5t^3-20 t+7 , y=psi(t)=4t^3-3t^2-18 t+3(|t|<2), then find the maximum and minimum values of y=f(x)dot

If the function y=f(x) is represented as x=phi(t)=t^5-5t^3-20 t+7 , y=psi(t)=4t^3-3t^2-18 t+3(|t|<2), then find the maximum and minimum values of y=f(x)dot

If the function y=f(x) is represented as x=phi(t)=t^5-5t^3-20 t+7 , y=psi(t)=4t^3-3t^2-18 t+3(|t|<2), then find the maximum and minimum values of y=f(x)dot

If y = f(x) defined parametrically by x = 2t - |t - 1| and y = 2t^(2) + t|t| , then

If the function y=f(x) is represented as x=phi(t)=t^(5)-5t^(3)-20t+7y=psi(t)=4t^(3)-3t^(2)-18t+3(|t|<2) then find the maximum and minimum values of y=f(x)

Let a function y = y (x) be defined parametrically by x = 2t - |t|, y =t^2 +t|t| . Then y^(1) (x), x gt 0

Let a function y=y(x) be defined parametrically by x=2t-|t|y=t^(2)+t|t| then y'(x),x>0